NUTRITION MANAGEMENT FOR COGNITIVE DISORDERS AND DEMENTIA (OVERVIEW)

Abstract


The current trend of increasing life expectancy and aging of the world's population is accompanied by the emergence of a global problem associated with a doubling of patients with «senile dementia» every 20 years. The concept of age-associated forms of cognitive disorders (vascular dementia, Alzheimer's, Parkinson's, etc.) is based on the provisions of the effects of unhealthy lifestyle and nutrition habits, family history, involutive metabolic processes, pathological complications of diseasesand their comorbidity. A literature search of systematic reviews, clinical research reports on the publication type «meta-analysis» and in the Medline system revealed that timely correction of negative PH, in particular the use of herodietics, helps to reduce/slow down the development of vascular dementia and cognitive disorders.

About the authors

L. N. Blinkova

N. A. Semashko National Research Institute of Public Health, 105064, Moscow, Russia

M. A. Yakushin

N. A. Semashko National Research Institute of Public Health, 105064, Moscow, Russia

O. V. Karpova

N. A. Semashko National Research Institute of Public Health, 105064, Moscow, Russia

References

  1. Якушин М. А., Карпова О. В. МИС «Деменция». Проблемы геронауки: АНО «ОСО ИТЕМ». 2023;47:280-1.
  2. Парфенов В. А., Захаров В. В., Преображенская И. С. Когнитивные расстройства. М.: Группа Ремедиум; 2014. С. 1-106.
  3. Кишкун А. А. Биологический возраст и старение: возможности определения и пути коррекции: Руководство для врачей. М.: ГЭОТАР-Медиа. 2008. С. 62-3.
  4. Блинкова Л. Н. Организационные аспекты питания пожилых людей. Вопросы питания. 2014;83(53):13.
  5. Статевич Н. Ю., Якушин М. А., Шарошина К. Б. и др. Распространенность старческой астении и анализ коморбидной патологии у лиц старше 60 лет (анализ научных публикаций). Вестник медицинского стоматологического института. 2023;(4):29-30.
  6. Dalal R., McGee R. G., Riordan S. M., et al. Probiotics for people with hepatic encephalopathy. Cochrane Database Syst Rev. 2017;2:CD008716.
  7. Valabhji J., Gorton T., Barron E., Safazadeh S., Earnshaw F., Helm C., et al. Early findings from the NHS Type 2 Diabetes Path to Remission Programme: a prospective evaluation of real-world implementation. Lancet Diabetes Endocrinol. 2024;12(9):612-3.
  8. Приказ Минздравсоцразвития России от 05.08.2003 г. №330 «О мерах по совершенствованию лечебного питания в лечебно-профилактических учреждениях РФ» (ред. 24.11.2016).
  9. Swaminathan M., Ellul M. A., Cross T. J. Hepatic encephalopathy: current challenges and future prospects. Hepat. Med. 2018 Mar 22;10:1-11. doi: 10.2147/HMER.S118964
  10. Williamson J. D., Pajewski N. M., Auchus A. P. Effect of Intensive vs Standard Blood Pressure Control on Probable Dementia: A Randomized Clinical Trial. JAMA. 2019;321(6):553-61.
  11. Kornerup L. S., Gluud L. L., Vilstrup H., Dam G. Update on the Therapeutic Management of Hepatic Encephalopathy. Curr. Gastroenterol. Rep. 2018 Apr 11;20(5):21. doi: 10.1007/s11894-018-0627-8
  12. Andrews V., Zammit G., O’Leary F. Dietary pattern, food, and nutritional supplement effects on cognitive outcomes in mild cognitive impairment: a systematic review of previous reviews. Nutr. Rev. 2023;81(11):1462-89.
  13. Del Parigi A., Panza F., Capurso C., Solfrizzi V. Nutritional factors, cognitive decline, and dementia. Brain Res. Bull. 2006;69(1):1-19.
  14. Chandler M. J., Parks A. C., Marsiske M., et al. Everyday Impact of Cognitive Interventions in Mild Cognitive Impairment: a Systematic Review and Meta-Analysis. Neuropsychol. Rev. 2016;26(3):225-51.
  15. Hill N. T., Mowszowski L., Naismith S. L., et al. Computerized Cognitive Training in Older Adults With Mild Cognitive Impairment or Dementia: A Systematic Review and Meta-Analysis. Am. J. Psychiatry. 2017;174(4):329-40.
  16. Singh B., Parsaik A. K., Mielke M. M., et al. Association of mediterranean diet with mild cognitive impairment and Alzheimer's disease: a systematic review and meta-analysis. J. Alzheimers Dis. 2014;39(2):271-82.
  17. Tsivgoulis G., Judd S., Letter A. J., et al. Adherence to a Mediterranean diet and risk of incident cognitive impairment. Neurology. 2013;80(18):1684-92.
  18. Гринюк В. В. Эволюция нелекарственной терапии когнитивных нарушений. Поведенческая неврология. 2024;(1):44-51.
  19. Barnes L. L., Klodian D., Liu X., et al. Trial of the MIND diet for prevention of cognitive decline in older persons. N. Engl. J. Med. 2023;389:602-11.
  20. García-Casares N., Gallego Fuentes P., Barbancho M. Á., et al. Alzheimer’s disease, mild cognitive impairmentand mediterranean diet. A systematic review and doseresponse meta-analysis. J. Clin. Med. 2021;10(20):4642.
  21. Ballarini T., van Lent D. M., Brunner J., et al. Mediterranean diet, Alzheimer disease biomarkers and brain atrophy in old age. Neurology. 2021;96:e2920-e2932.
  22. Gu Y., Luchsinger J. A., Stern Y., et al. Mediterranean Diet, Inflammatory and Metabolic Biomarkers, and Risk of AlzheimerХs Disease. J. Alzheimer Dis. 2010;22(2):483-92.
  23. Jeszka-Skowron M., Zgoła-Grzekowiak A., Grzekowiak T. Analytical methods applied for the characterization and the determination of bioactive compounds in coffee. Eur. Food Res. Technol. 2015;240:19-31.
  24. Liu Q.-P., Wu Y. F., Cheng H. Y., et al. Habitual coffee consumption and risk of cognitive decline/dementia: A systematic review and-metaanalysis of prospective cohort studies. Nutrition. 2016;32:628-36.
  25. Сиволап Ю. П., Дамулин И. В. Кофеин: полезное психоактивное вещество? Вопросы диетологии. 2017;7(1):42-6.
  26. Camandola S., Plick N., Mattson M. P. Impact of Coffee and Cacao Purine Metabolites on Neuroplasticity and Neurodegenerative Disease. Neurochem. Res. 2019 Jan;44(1):214-27. doi: 10.1007/s11064-018-2492-0
  27. Colombo R., Papetti A. An outlook on the role of decaffeinated coffee in neurodegenerative diseases. Crit. Rev. Food Sci. Nutr. 2020;60(5):760-79. doi: 10.1080/10408398.2018.1550384. Epub 2019 Jan 7.
  28. Nabbi-Schroeter D., Elmenhorst D., Oskamp A., Laskowski S., Bauer A., Kroll T. Effects of Long-Term Caffeine Consumption on the Adenosine A1 Receptor in the Rat Brain: an In Vivo PET Study with [18F]CPFPX. Mol. Imaging Biol. 2018 Apr;20(2):284-91.
  29. Cho B. H., Choi S. M., Kim J. T., Kim B. C. Association of coffee consumption and non-motor symptoms in drug-naïve, early-stage Parkinson's disease. Parkinsonism Relat. Disord. 2018 May:50:42-7. doi: 10.1016/j.parkreldis.2018.02.016. Epub 2018 Feb 9.
  30. Scheperjans F., Pekkonen E., Kaakkola S., Auvinen P. Linking Smoking, Coffee, Urate, and Parkinson's Disease — A Role for Gut Microbiota? J. Parkinsons Dis. 2015;5(2):255-62.
  31. Зайцева О. Е. Должны потребители кофеин-содержащих напитков знать фармакокинетику кофеина? Фундаментальные исследования. 2015;(1-5):946-52.
  32. Щербакова А. С., Ткач В. В., Ткач А. В. Влияние дефицит витамина Д на течение нейродегенеративных заболеваний. Modern Science. 2021;1(2):250-4.
  33. Cui X., Pelekanos M., Burne T. H., et al. Maternal vitamin D deficiency alters the expression of genes involved in dopamine specification in the developing rat mesencephalon. Neurosci. Lett. 2010;486(3):220-3.
  34. Cui X., Pelekanos M., Liu P. Y., et al. The vitamin D receptor in dopamine neurons; its presence in human substantianigra and its ontogenesis in rat midbrain. Neuroscience. 2013;236:77-87.
  35. Moore C., Murphy M. M., Keast D. R., et al. Vitamin D intake in the United States. J. Am. Dietet. Assoc. 2004;104(6):980-3.
  36. Kesby J. P., Cui X., O’Loan J., et al. Developmental vitamin D deficiency alters dopamine-mediated behaviors and dopamine transporter function in adult female rats. Psychopharmacology. 2010;208(1):159-68.
  37. Jayedi A., Rashidy-Pour A., Shab-Bidar S. Vitamin D status and risk of dementia and Alzheimer's disease: A meta-analysis of dose-response. Nutrit. Neurosci. 2019;22(11):750-9.
  38. Annweiler C. Vitamin D in dementia prevention. Ann. N. Y. Acad. Sci. 2016;1367(1):57-63.
  39. Llewellyn D. J., Lang I. A., Langa K. M., Muniz-Terrera G., Phillips C. L., Cherubini A., Ferrucci L., Melzer D. Vitamin D and risk of cognitive decline in elderly persons. Arch. Intern. Med. 2010;170(13):1135-41.
  40. Alsharidah M., Murtaza A., Alsharidah G. M., Bashir S. Fasting in Ramadan affects cognitive and physiological function in normal subjects (pilot study). Neurosci. Med. 2016;7:60-5.
  41. Moberg P. J., Turetsky B. I. Scent of a disorder: olfactory functioning in schizophrenia. Curr. Psychiatry Rep. 2003;5:311-31.
  42. Crichton G. E., Bryan J., Murphy K. J. Dietary antioxidants, cognitive function and dementia — a systematic review. Plant. Foods Hum. Nutr. 2013;68:279-92.
  43. Vlachos G. S., Scarmeas N. Dietary interventions in mild cognitive impairment and dementia. Dialogues Clin. Neurosci. 2019;21(1):69-82.
  44. Logroscino G., Mayeux R. Diet and Parkinson’s disease. Neurology. 1997;49(2):310-1.
  45. Методические рекомендации МР 2.3.1.1915-04 «Рекомендуемые уровни потребления пищевых и биологических веществ». В. А. Тутельян, Г. Г. Онищенко, А. В. Скальный и др. М.; 2004. 36 с.
  46. Larrieu S., Letenneur L., Helmer C., et al. Nutritional factors and risk of incident dementia inthe PAQUID longitudinal cohort. J. Nutr. Health Aging. 2004;8:150-4.
  47. Johnson E. J. Role of lutein and zeaxanthin in visual and cognitive function throughout the lifespan. Nutr. Rev. 2014;72:605-12.
  48. Liu C. B., Wang R., Yi Y. F., et al. Lycopene mitigates β-amyloid induced inflammatory response and inhibits NF-κB signaling at the choroid plexus in early stages of Alzheimer’s disease rats. J. Nutr. Biochem. 2018;53:66-71.
  49. Wang J., Li L., Wang Z., et al. Supplementation of lycopene attenuates lipopolysaccharide-induced amyloidogenesis and cognitive impairments via mediating neuroinflammation and oxidative stress. J. Nutr. Biochem. 2018;56:16-25.
  50. Cattane A., Cattan N., Galluzzi S., et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol. Aging. 2017;49:60-8. doi: 10.1016/j.neurobiolaging.2016.08.019
  51. Gu S. L., Gong Y., Zhang J., et al. Effect of the Short-Term Use of Fluoroquinolone and β-Lactam Antibiotics on Mouse Gut Microbiota. Infect. Drug Resist. 2020;13:4547-58.
  52. Tian J., Lu Y., Zhang H., et al. Gamma-aminobutyric Acid Inhibits T Cell Autoimmunity and the Development of Inflammatory Responses in a Mouse Type 1 Diabetes Model. J Immunol. 2004;173(8):5298-304. doi: 10.4049/jimmunol.173.8.5298

Statistics

Views

Abstract - 0

PDF (Russian) - 0

Cited-By


PlumX

Dimensions


Copyright (c) 2025 АО "Шико"

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Mailing Address

Address: 105064, Vorontsovo Pole, 12, Moscow

Email: ttcheglova@gmail.com

Phone: +7 903 671-67-12

Principal Contact

Tatyana Sheglova
Head of the editorial office
FSSBI «N.A. Semashko National Research Institute of Public Health»

105064, Vorontsovo Pole st., 12, Moscow


Phone: +7 903 671-67-12
Email: redactor@journal-nriph.ru

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies