THE PRECISION APPROACH IN CONTEMPORARY NEUROSURGICAL PRACTICE: A REVIEW

  • Authors: Annikov Y.G.1, Chekhonatskiy A.A.1, Komleva N.E.1,2, Filatov D.N.1, Tsyganov V.I.1, Chekhonatskiy V.A.3, Annikova O.V.1
  • Affiliations:
    1. The Federal State Budget Educational Institution of Higher Education "The V. I. Razumovsky Saratov State Medical University of Minzdrav of Russia", 410012, Saratov, Russia
    2. The Federal State Budget Educational Institution of Additional Professional Education "The Russian Medical Academy of Continuous Professional Education" of Minzdrav of Russia, 125445, Moscow, Russia
    3. -=3=-
  • Issue: Vol 34, No 1 (2026)
  • Pages: 108-112
  • Section: Articles
  • URL: https://journal-nriph.ru/journal/article/view/2531
  • DOI: https://doi.org/10.32687/0869-866X-2026-34-1-108-112
  • Cite item

Abstract


The review was based on analysis of 180 sources from databases PubMed, eLibrary, Cohrane Library, MEDLINE for 2015–2025 using keywords "precision medicine", "personalized medicine", "neuro-oncology", "oncology", "cranio-cerebral injury", "neuro-trauma", "neuro-proteomics" and "AI". The purpose of the study was to demonstrate, on the basis of analysis of publications on precision medicine application in neurosurgery, the significance and perspectives of mentioned approach in modern neurosurgical practice. The methods of precision medicine, digital revolution and progress in multi-modal Big Data processing permit to better understand of tumor genesis, their clinical heterogeneity, functional effects and causes underlying their resistance to treatment. The precision medicine methods provide valuable information on pathophysiological mechanisms underlying neuro-trauma through analysis of complex protein interactions and changes. The future of precision medicine in neurosurgical practice is in permanent enhancement of AI and machine learning, permitting rapid and accurate decision-making based on comprehensive molecular data. The future of neurosurgery lies in harmonious integration of such interdisciplinary approaches as precision medicine and clinical neurosurgery to discover new possibilities of targeted and personalized therapy.

About the authors

Yu. G. Annikov

The Federal State Budget Educational Institution of Higher Education "The V. I. Razumovsky Saratov State Medical University of Minzdrav of Russia", 410012, Saratov, Russia

A. A. Chekhonatskiy

The Federal State Budget Educational Institution of Higher Education "The V. I. Razumovsky Saratov State Medical University of Minzdrav of Russia", 410012, Saratov, Russia

N. E. Komleva

The Federal State Budget Educational Institution of Higher Education "The V. I. Razumovsky Saratov State Medical University of Minzdrav of Russia", 410012, Saratov, Russia; The Federal State Budget Educational Institution of Additional Professional Education "The Russian Medical Academy of Continuous Professional Education" of Minzdrav of Russia, 125445, Moscow, Russia

D. N. Filatov

The Federal State Budget Educational Institution of Higher Education "The V. I. Razumovsky Saratov State Medical University of Minzdrav of Russia", 410012, Saratov, Russia

V. I. Tsyganov

The Federal State Budget Educational Institution of Higher Education "The V. I. Razumovsky Saratov State Medical University of Minzdrav of Russia", 410012, Saratov, Russia

V. A. Chekhonatskiy

-=3=-

O. V. Annikova

The Federal State Budget Educational Institution of Higher Education "The V. I. Razumovsky Saratov State Medical University of Minzdrav of Russia", 410012, Saratov, Russia

References

  1. Gilard V., Derrey S., Marret S., et al. Precision neurosurgery: a path forward. J. Pers. Med. 2021;11(10):1019. doi: 10.3390/jpm11101019
  2. Kobeissy F., Goli M., Yadikar H. Advances in neuroproteomics for neurotrauma: unraveling insights for personalized medicine and future prospects. Front. neurol. 2023;14:1288740. doi: 10.3389/fneur.2023.1288740
  3. Yan R., Greenfield J. Emergence of Precision Medicine Within Neurological Surgery: Promise and Opportunity. World Neurosurg. 2024;190:564—72. doi: 10.1016/j.wneu.2024.06.143
  4. Holland E., Ene C. Personalized Medicine for Gliomas. Surg. Neurol. Int. 2015;6:89—95. doi: 10.4103/2152-7806.151351
  5. Jain K. A Critical Overview of Targeted Therapies for Glioblastoma. Front. Oncol. 2018;8:419. doi: 10.3389/fonc.2018.00419
  6. Alexander B., Cloughesy T. Adult Glioblastoma. J. Clin. Oncol. 2017;35:2402—9. doi: 10.1200/JCO.2017.73.0119
  7. Kowalczyk T., Ciborowski M., Kisluk J. Mass spectrometry based proteomics and metabolomics in personalized oncology. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2020;1866:165690. doi: 10.1016/j.bbadis.2020.165690
  8. Kristensen B., Priesterbach-Ackley L., Petersen J. Molecular pathology of tumors of the central nervous system. Ann. Oncol. 2019;30:1265—78. doi: 10.1093/annonc/mdz164
  9. Peeken J., Goldberg T., Pyka T. Combining multimodal imaging and treatment features improves machine learning-based prognostic assessment in patients with glioblastoma multiforme. Cancer Med. 2019;8:128—36. doi: 10.1002/cam4.1908
  10. Shen J., Song R., Hodges T. Identification of metabolites in plasma for predicting survival in glioblastoma. Mol. Carcinog. 2018;57:1078—84. doi: 10.1002/mc.22815
  11. Touat M., Idbaih A., Sanson M., et al. Glioblastoma targeted therapy: Updated approaches from recent biological insights. Ann. Oncol. 2017;28:1457—72. doi: 10.1093/annonc/mdx106
  12. Truman J.-P., García-Barros M., Obeid L. Evolving concepts in cancer therapy through targeting sphingolipid metabolism. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids. 2014;1841:1174—88. doi: 10.1016/j.bbalip.2013.12.013
  13. Анников Ю. Г., Кром И. Л., Левченко Л. Л. Современный контент персонализированной реабилитации пациентов с последствиями черепно-мозговой травмы. Саратовский научно-медицинский журнал. 2023;19(3):273—8. doi: 10.15275/ssmj1903273
  14. Anada R., Wong K., Jayapalan J. Panel of serum protein biomarkers to grade the severity of traumatic brain injury. Electrophoresis. 2018;39:2308—15. doi: 10.1002/elps.201700407
  15. Alaaeddine R., Fayad M., Nehme E. The emerging role of proteomics in precision medicine: applications in neurodegenerative diseases and Neurotrauma. Adv. Exp. Med. Biol. 2017;1007:59—70. doi: 10.1007/978-3-319-60733-7_4
  16. Ottens A., Kobeissy F., Fuller B. Novel neuroproteomic approaches to studying traumatic brain injury. Prog. Brain Res. 2007;161:401—18. doi: 10.1016/S0079-6123(06)61029-7
  17. Ottens A., Kobeissy F., Golden E. Neuroproteomics in neurotrauma. Mass Spectrom. Rev. 2006;25:380—408. doi: 10.1002/mas.20073
  18. Kobeissy F., Ottens A., Zhang Z. Novel differential Neuroproteomics analysis of traumatic brain injury in rats. Mol. Cell Proteomics. 2006;5:1887—98. doi: 10.1074/mcp.M600157-MCP200
  19. Guingab-Cagmat J., Newsom K., Vakulenko A. In vitro MS-based proteomic analysis and absolute quantification of neuronal-glial injury biomarkers in cell culture system. Electrophoresis. 2012;33:3786—97. doi: 10.1002/elps.201200326
  20. Kochanek A., Kline A., Gao W. Gel-based hippocampal proteomic analysis 2 weeks following traumatic brain injury to immature rats using controlled cortical impact. Dev. Neurosci. 2006;28:410—9. doi: 10.1159/000094167
  21. Kobeissy F., Guingab-Cagmat J., Zhang Z. Neuroproteomics and systems biology approach to identify temporal biomarker changes post experimental traumatic brain injury in rats. Front. Neurol. 2016;7:198. doi: 10.3389/fneur.2016.00198
  22. Wang K., Yang Z., Yue J. Plasma Anti-Glial Fibrillary Acidic Protein Autoantibody Levels during the Acute and Chronic Phases of Traumatic Brain Injury: A Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot Study. J. Neurotrauma. 2016;33(13):1270—7. doi: 10.1089/neu.2015.3881
  23. Irimia A., Goh S., Torgerson C. Structural and connectomic neuroimaging for the personalized study of longitudinal alterations in cortical shape, thickness and connectivity after traumatic brain injury. J. Neurosurg. Sci. 2014;5 (3):129—44.
  24. Xu B., Tian R., Wang X. Protein profile changes in the frontotemporal lobes in human severe traumatic brain injury. Brain Res. 2016;1642:344—52. doi: 10.1016/j.brainres.2016.04.008
  25. Zhou D., Liu J., Hang Y. TMT-based proteomics analysis reveals the protective effects of Xuefu Zhuyu decoction in a rat model of traumatic brain injury. J. Ethnopharmacol. 2020;258:112826. doi: 10.1016/j.jep.2020.112826
  26. Haring A., Sontheimer H., Johnson B. Microphysiological Human Brain and Neural Systems-on-a-Chip: Potential Alternatives to Small Animal Models and Emerging Platforms for Drug Discovery and Personalized Medicine. Stem Cell Rev. Rep. 2017;13(3):381—406. doi: 10.1007/s12015-017-9738-0
  27. Wong H., Cvijanovich N., Anas N. Developing a clinically feasible personalized medicine approach to pediatric septic shock. Am. J. Respir. Crit. Care Med. 2015;191(3):309—15. doi: 10.1164/rcm.201410-1864OC
  28. Davenport T., Kalakota R. The potential for artificial intelligence in healthcare. Future Healthcare J. 2019;6:94—8. doi: 10.7861/futurehosp.6-2-94
  29. Johnson K., Wei W., Weeraratne D. Precision medicine, AI, and the future of personalized health care. Clin. Trans. Sci. 2021;14:86—93. doi: 10.1111/cts.12884
  30. Sebastiani M., Vacchi C., Manfredi A. Personalized medicine and machine learning: a roadmap for the future. J. Clin. Med. 2022;11:4110. doi: 10.3390/jcm11144110
  31. Allami R., Yousif M. Integrative AI-driven strategies for advancing precision medicine in infectious diseases and beyond: a novel multidisciplinary approach. ArXiv. 2023;2023:15228. doi: 10.48550/arXiv.2307.15228
  32. Sundaravadhanan S. Neurotrauma: A Futuristic Perspective. Indian J. Neurotrauma. 2018;15:78—81. doi: 10.1055/s-0039-1694297
  33. Liu N., Salinas J. Machine learning for predicting outcomes in trauma. Shock. 2017;48:504—10. doi: 10.1097/SHK.0000000000000898
  34. Feng J., Wang Y., Peng J. Comparison between logistic regression and machine learning algorithms on survival prediction of traumatic brain injuries. J. Crit. Care. 2019;54:110—6. doi: 10.1016/j.jcrc.2019.08.010
  35. Raju B., Jumah F., Ashraf O. Big data, machine learning, and artificial intelligence: a field guide for neurosurgeons. J. Neurosurg. 2020;1:1—11. doi: 10.3171/2020.5.JNS201288
  36. Nice E. From proteomics to personalized medicine: the road ahead. Expert Rev. Proteomics. 2016;13:341—3. doi: 10.1586/14789450.2016.1158107
  37. Yadikar H., Sarkis G. A., Kurup M. Peptidomics and traumatic brain injury: Biomarker utilities for a theragnostic approach In: Yadikar H., ed. Biomarkers for Traumatic Brain Injury. Amsterdam: Elsevier; 2020. P. 419—30.

Statistics

Views

Abstract - 0

PDF (Russian) - 0

Cited-By


PlumX

Dimensions


Copyright (c) 2026 АО "Шико"

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Mailing Address

Address: 105064, Vorontsovo Pole, 12, Moscow

Email: ttcheglova@gmail.com

Phone: +7 903 671-67-12

Principal Contact

Tatyana Sheglova
Head of the editorial office
FSSBI «N.A. Semashko National Research Institute of Public Health»

105064, Vorontsovo Pole st., 12, Moscow


Phone: +7 903 671-67-12
Email: redactor@journal-nriph.ru

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies