ПРЕЦИЗИОННЫЙ ПОДХОД В СОВРЕМЕННОЙ НЕЙРОХИРУРГИЧЕСКОЙ ПРАКТИКЕ (ОБЗОР)
- Авторы: Анников Ю.Г.1, Чехонацкий А.А.1, Комлева Н.Е.1,2, Филатов Д.Н.1, Цыганов В.И.1, Чехонацкий В.А.3, Анникова О.В.1
- Учреждения:
- ФГБОУ ВО «Саратовский государственный медицинский университет имени В. И. Разумовского» Минздрава России, 410012, г. Саратов
- Саратовский медицинский научный центр гигиены ФБУН «ФНЦ медико-профилактических технологий управления рисками здоровью населения», 410022, г. Саратов
- ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, 125993, г. Москва
- Выпуск: Том 34, № 1 (2026)
- Страницы: 108-112
- Раздел: Статьи
- URL: https://journal-nriph.ru/journal/article/view/2531
- DOI: https://doi.org/10.32687/0869-866X-2026-34-1-108-112
- Цитировать
Аннотация
Об авторах
Ю. Г. Анников
ФГБОУ ВО «Саратовский государственный медицинский университет имени В. И. Разумовского» Минздрава России, 410012, г. Саратов
А. А. Чехонацкий
ФГБОУ ВО «Саратовский государственный медицинский университет имени В. И. Разумовского» Минздрава России, 410012, г. Саратов
Н. Е. Комлева
ФГБОУ ВО «Саратовский государственный медицинский университет имени В. И. Разумовского» Минздрава России, 410012, г. Саратов; Саратовский медицинский научный центр гигиены ФБУН «ФНЦ медико-профилактических технологий управления рисками здоровью населения», 410022, г. Саратов
Д. Н. Филатов
ФГБОУ ВО «Саратовский государственный медицинский университет имени В. И. Разумовского» Минздрава России, 410012, г. Саратов
В. И. Цыганов
ФГБОУ ВО «Саратовский государственный медицинский университет имени В. И. Разумовского» Минздрава России, 410012, г. Саратов
В. А. Чехонацкий
ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, 125993, г. Москва
О. В. Анникова
ФГБОУ ВО «Саратовский государственный медицинский университет имени В. И. Разумовского» Минздрава России, 410012, г. Саратов
Список литературы
- Gilard V., Derrey S., Marret S., et al. Precision neurosurgery: a path forward. J. Pers. Med. 2021;11(10):1019. doi: 10.3390/jpm11101019
- Kobeissy F., Goli M., Yadikar H. Advances in neuroproteomics for neurotrauma: unraveling insights for personalized medicine and future prospects. Front. neurol. 2023;14:1288740. doi: 10.3389/fneur.2023.1288740
- Yan R., Greenfield J. Emergence of Precision Medicine Within Neurological Surgery: Promise and Opportunity. World Neurosurg. 2024;190:564—72. doi: 10.1016/j.wneu.2024.06.143
- Holland E., Ene C. Personalized Medicine for Gliomas. Surg. Neurol. Int. 2015;6:89—95. doi: 10.4103/2152-7806.151351
- Jain K. A Critical Overview of Targeted Therapies for Glioblastoma. Front. Oncol. 2018;8:419. doi: 10.3389/fonc.2018.00419
- Alexander B., Cloughesy T. Adult Glioblastoma. J. Clin. Oncol. 2017;35:2402—9. doi: 10.1200/JCO.2017.73.0119
- Kowalczyk T., Ciborowski M., Kisluk J. Mass spectrometry based proteomics and metabolomics in personalized oncology. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2020;1866:165690. doi: 10.1016/j.bbadis.2020.165690
- Kristensen B., Priesterbach-Ackley L., Petersen J. Molecular pathology of tumors of the central nervous system. Ann. Oncol. 2019;30:1265—78. doi: 10.1093/annonc/mdz164
- Peeken J., Goldberg T., Pyka T. Combining multimodal imaging and treatment features improves machine learning-based prognostic assessment in patients with glioblastoma multiforme. Cancer Med. 2019;8:128—36. doi: 10.1002/cam4.1908
- Shen J., Song R., Hodges T. Identification of metabolites in plasma for predicting survival in glioblastoma. Mol. Carcinog. 2018;57:1078—84. doi: 10.1002/mc.22815
- Touat M., Idbaih A., Sanson M., et al. Glioblastoma targeted therapy: Updated approaches from recent biological insights. Ann. Oncol. 2017;28:1457—72. doi: 10.1093/annonc/mdx106
- Truman J.-P., García-Barros M., Obeid L. Evolving concepts in cancer therapy through targeting sphingolipid metabolism. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids. 2014;1841:1174—88. doi: 10.1016/j.bbalip.2013.12.013
- Анников Ю. Г., Кром И. Л., Левченко Л. Л. Современный контент персонализированной реабилитации пациентов с последствиями черепно-мозговой травмы. Саратовский научно-медицинский журнал. 2023;19(3):273—8. doi: 10.15275/ssmj1903273
- Anada R., Wong K., Jayapalan J. Panel of serum protein biomarkers to grade the severity of traumatic brain injury. Electrophoresis. 2018;39:2308—15. doi: 10.1002/elps.201700407
- Alaaeddine R., Fayad M., Nehme E. The emerging role of proteomics in precision medicine: applications in neurodegenerative diseases and Neurotrauma. Adv. Exp. Med. Biol. 2017;1007:59—70. doi: 10.1007/978-3-319-60733-7_4
- Ottens A., Kobeissy F., Fuller B. Novel neuroproteomic approaches to studying traumatic brain injury. Prog. Brain Res. 2007;161:401—18. doi: 10.1016/S0079-6123(06)61029-7
- Ottens A., Kobeissy F., Golden E. Neuroproteomics in neurotrauma. Mass Spectrom. Rev. 2006;25:380—408. doi: 10.1002/mas.20073
- Kobeissy F., Ottens A., Zhang Z. Novel differential Neuroproteomics analysis of traumatic brain injury in rats. Mol. Cell Proteomics. 2006;5:1887—98. doi: 10.1074/mcp.M600157-MCP200
- Guingab-Cagmat J., Newsom K., Vakulenko A. In vitro MS-based proteomic analysis and absolute quantification of neuronal-glial injury biomarkers in cell culture system. Electrophoresis. 2012;33:3786—97. doi: 10.1002/elps.201200326
- Kochanek A., Kline A., Gao W. Gel-based hippocampal proteomic analysis 2 weeks following traumatic brain injury to immature rats using controlled cortical impact. Dev. Neurosci. 2006;28:410—9. doi: 10.1159/000094167
- Kobeissy F., Guingab-Cagmat J., Zhang Z. Neuroproteomics and systems biology approach to identify temporal biomarker changes post experimental traumatic brain injury in rats. Front. Neurol. 2016;7:198. doi: 10.3389/fneur.2016.00198
- Wang K., Yang Z., Yue J. Plasma Anti-Glial Fibrillary Acidic Protein Autoantibody Levels during the Acute and Chronic Phases of Traumatic Brain Injury: A Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot Study. J. Neurotrauma. 2016;33(13):1270—7. doi: 10.1089/neu.2015.3881
- Irimia A., Goh S., Torgerson C. Structural and connectomic neuroimaging for the personalized study of longitudinal alterations in cortical shape, thickness and connectivity after traumatic brain injury. J. Neurosurg. Sci. 2014;5 (3):129—44.
- Xu B., Tian R., Wang X. Protein profile changes in the frontotemporal lobes in human severe traumatic brain injury. Brain Res. 2016;1642:344—52. doi: 10.1016/j.brainres.2016.04.008
- Zhou D., Liu J., Hang Y. TMT-based proteomics analysis reveals the protective effects of Xuefu Zhuyu decoction in a rat model of traumatic brain injury. J. Ethnopharmacol. 2020;258:112826. doi: 10.1016/j.jep.2020.112826
- Haring A., Sontheimer H., Johnson B. Microphysiological Human Brain and Neural Systems-on-a-Chip: Potential Alternatives to Small Animal Models and Emerging Platforms for Drug Discovery and Personalized Medicine. Stem Cell Rev. Rep. 2017;13(3):381—406. doi: 10.1007/s12015-017-9738-0
- Wong H., Cvijanovich N., Anas N. Developing a clinically feasible personalized medicine approach to pediatric septic shock. Am. J. Respir. Crit. Care Med. 2015;191(3):309—15. doi: 10.1164/rcm.201410-1864OC
- Davenport T., Kalakota R. The potential for artificial intelligence in healthcare. Future Healthcare J. 2019;6:94—8. doi: 10.7861/futurehosp.6-2-94
- Johnson K., Wei W., Weeraratne D. Precision medicine, AI, and the future of personalized health care. Clin. Trans. Sci. 2021;14:86—93. doi: 10.1111/cts.12884
- Sebastiani M., Vacchi C., Manfredi A. Personalized medicine and machine learning: a roadmap for the future. J. Clin. Med. 2022;11:4110. doi: 10.3390/jcm11144110
- Allami R., Yousif M. Integrative AI-driven strategies for advancing precision medicine in infectious diseases and beyond: a novel multidisciplinary approach. ArXiv. 2023;2023:15228. doi: 10.48550/arXiv.2307.15228
- Sundaravadhanan S. Neurotrauma: A Futuristic Perspective. Indian J. Neurotrauma. 2018;15:78—81. doi: 10.1055/s-0039-1694297
- Liu N., Salinas J. Machine learning for predicting outcomes in trauma. Shock. 2017;48:504—10. doi: 10.1097/SHK.0000000000000898
- Feng J., Wang Y., Peng J. Comparison between logistic regression and machine learning algorithms on survival prediction of traumatic brain injuries. J. Crit. Care. 2019;54:110—6. doi: 10.1016/j.jcrc.2019.08.010
- Raju B., Jumah F., Ashraf O. Big data, machine learning, and artificial intelligence: a field guide for neurosurgeons. J. Neurosurg. 2020;1:1—11. doi: 10.3171/2020.5.JNS201288
- Nice E. From proteomics to personalized medicine: the road ahead. Expert Rev. Proteomics. 2016;13:341—3. doi: 10.1586/14789450.2016.1158107
- Yadikar H., Sarkis G. A., Kurup M. Peptidomics and traumatic brain injury: Biomarker utilities for a theragnostic approach In: Yadikar H., ed. Biomarkers for Traumatic Brain Injury. Amsterdam: Elsevier; 2020. P. 419—30.




