THE APPLICATION OF STATISTICAL PROGRAMS AND METHODS OF DATA MATHEMATICAL PROCESSING IN OBSTETRICS AND GYNECOLOGY

  • Authors: Shulaev A.V.1,2, Talipova I.R.1,2, Mingazova E.N.1,2,3, Marapov D.I.4
  • Affiliations:
    1. The Federal State Budget Educational Institution of Higher Education “The Kazan State Medical University” of the Minzdrav of Russia, 420012, Kazan, Russia
    2. N. A. Semashko National Research Institute of Public Health, 105064, Moscow, Russia
    3. The Kazan State Medical Academy Branch of The Federal State Budget Educational Institution of Higher Education of Continuing Professional Education The Federal State Budget Educational Institution of Additional Professional Education “The Russian Medical Academy of Continuous Professional Education” of Minzdrav of Russia, 420012, Kazan, Russia
  • Issue: Vol 31, No 3 (2023)
  • Pages: 448-452
  • Section: Articles
  • URL: https://journal-nriph.ru/journal/article/view/1819
  • DOI: https://doi.org/10.32687/0869-866X-2023-31-3-448-452
  • Cite item

Abstract


In recent decades, evidence-based medicine acquired special importance in medicine. Therefore, proper presentation of data obtained in scientific research is extremely important. The statistical data processing, being an integral part of this process, often causes difficulties for researchers and its incorrect application results in distortion of results obtained. The purpose of the study is to comparatively analyze programs and methods of statistical data processing applied in dissertations on obstetrics and gynecology in 2011–2021, to examine trends in choosing them depending on specificity of research issue and to identify shortcomings erred by authors in choosing or describing data processing methods. The sampling for analysis included 258 abstracts of candidate's dissertations in the specialty “obstetrics and gynecology”, defended in 2011–2021. The analysis covered the programs and methods of mathematical data processing. Over the past decade, significant complication of statistical processing of results of clinical trials in obstetrics and gynecology occurred in part of methods applied. The application of binary logistic regression and discriminant analysis increased most significantly over the past decade. Such sophisticated methods of statistical data processing as factor analysis, decision trees, ordinal logistic regression and neural networks began to be used too. The trend of gradual replacement of parametric methods (Student's t-test, one-way analysis of variance) by such corresponding non-parametric methods as Mann-Whitney test, Kruskal-Wallis test. The Microsoft Excel and Statistica were used most often for data processing. In recent years, the software SPSS Statistics is actively applied. However, problems in describing statistical methods used in dissertations continue to be present. In significant part of dissertations information about statistical program applied, methods of assessing of quantitative data distribution and criteria of significance of obtained results is absent. The proper application of statistical programs, methods of information processing, adequate interpretation of results as well as provision of complete information about methodological support are the key points to carry out modern research resulting in trusted attitude to scientific work and its results.

About the authors

A. V. Shulaev

The Federal State Budget Educational Institution of Higher Education “The Kazan State Medical University” of the Minzdrav of Russia, 420012, Kazan, Russia;

I. R. Talipova

The Federal State Budget Educational Institution of Higher Education “The Kazan State Medical University” of the Minzdrav of Russia, 420012, Kazan, Russia;

E. N. Mingazova

The Federal State Budget Educational Institution of Higher Education “The Kazan State Medical University” of the Minzdrav of Russia, 420012, Kazan, Russia; ;N. A. Semashko National Research Institute of Public Health, 105064, Moscow, Russia;

D. I. Marapov

The Kazan State Medical Academy Branch of The Federal State Budget Educational Institution of Higher Education of Continuing Professional Education The Federal State Budget Educational Institution of Additional Professional Education “The Russian Medical Academy of Continuous Professional Education” of Minzdrav of Russia, 420012, Kazan, Russia

References

  1. Petersen K. S., Kris-Etherton P. M., McCabe G. P., Raman G., Miller J. W., Maki K. C. Perspective: Planning and сonducting statistical analyses for human nutrition randomized controlled trials: ensuring data quality and integrity. Adv. Nutrit. 2021;12(5):1610—24. doi: 10.1093/advances/nmab045
  2. Кожевникова Т. В., Манжула И. С. Применение информационных технологий на основе статистического анализа в медицинских исследованиях. Научно-техническое и экономическое сотрудничество стран АТР в XXI веке. 2020;(2):377—82.
  3. Румянцев П. О., Саенко У. В., Румянцева У. В. Статистические методы анализа в клинической практике. Часть I. Одномерный статистический анализ. Проблемы эндокринологии. 2009;55(5):48—55. doi: 10.14341/probl200955548-55
  4. American Statistical Association. American Statistical Association releases statement on statistical significance and P-values: provides principles to improve the conduct and interpretation of quantitative science. 2016. Режим доступа: https://www.amstat.org/newsroom/pressreleases/P-ValueStatement.pdf (дата обращения 24.01.2022).
  5. Гончаревская З. Л., Москвичева В. C. Статистический анализ медико-биологических данных. Часть I. StatusPraesens. Гинекология, акушерство, бесплодный брак. 2021;75(1):72—5.
  6. Шибзухова Л. А., Водахова В. А., Абазова З. Х. Математическая статистика в медицинских исследованиях. В сб.: Актуальные вопросы в науке и практике. Сборник статей по материалам XVI международной научно-практической конференции. В 2-х ч. Уфа; 2019. Ч. 1. С. 8—12.
  7. Караулова Л. В. О разработке алгоритма по выбору статистических критериев в медико-биологических исследованиях. Медицинское образование сегодня. 2019;1(5):61—72.
  8. Наркевич А. Н., Виноградов К. А. Выбор метода для статистического анализа медицинских данных и способа графического представления результатов. Социальные аспекты здоровья населения [сетевое издание]. 2019;65(4). doi: 10.21045/2071-5021-2019-65-4-9
  9. Наркевич А. Н., Виноградов К. А. Настольная книга автора медицинской диссертации: пособие. М.: Инфра-М; 2019. 454 с.
  10. Ковалев А. А., Игнатенко В. А., Ядченко А. А. Некоторые проблемы обучения методам статистического анализа данных и возможности современных информационных технологий для их решения. Проблемы здоровья и экологии. 2019;62(4):94—9.
  11. Страхова О. П., Каблуков А. А. Использование информационных технологий в преподавании статистики в гуманитарных вузах. Медицина и экология. 2014;73(4):43—8.
  12. Нохрин Д. Ю. Лабораторный практикум по биостатистике. Челябинск; 2018. 289 с.

Statistics

Views

Abstract - 2

PDF (Russian) - 2

Cited-By


PlumX

Dimensions


Copyright (c) 2023 АО "Шико"

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Mailing Address

Address: 105064, Vorontsovo Pole, 12, Moscow

Email: ttcheglova@gmail.com

Phone: +7 903 671-67-12

Principal Contact

Tatyana Sheglova
Head of the editorial office
FSSBI «N.A. Semashko National Research Institute of Public Health»

105064, Vorontsovo Pole st., 12, Moscow


Phone: +7 903 671-67-12
Email: redactor@journal-nriph.ru

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies