ACTUAL STRATEGIES FOR PREVENTING TYPE-1 DIABETES: INTERNATIONAL LITERATURE REVIEW

Abstract


The exact etiology and mechanisms that trigger the development of type 1 diabetes mellitus (DM1) are not conclusively studied. However, there is increasing scientific evidence that damage to pancreatic islet cells (β-cells) in genetically predisposed individuals is initiated by environmental factors. Currently, the main tactic of DM1 treatment at the stage of clinical manifestations is based on insulin replacement therapy. The introduction of modern insulin drugs and devices for its delivery, as well as continuous glucose monitoring systems into medical practice does not relieve patients from the need to take this hormone for life. Therefore, the development of methods to prevent DM1 remains the main task of diabetes research. This article was prepared based on a review of current publications from the PubMed bibliographic database. The article discusses strategies targeting environmental triggers, methods to regulate the immune response using current cellular approaches and novel autoantigens, as well as off-target effects of the BCG vaccine and general principles of personalized prevention.

About the authors

N. A. Grechushkina

Research Institute for Healthcare Organization and Medical Management, 115088, Moscow, Russia

References

  1. Insel R. A., Dunne J. L., Atkinson M. A. et al. Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association // Diabetes Care. 2015. Vol. 38, N 10. P. 1964–1974. doi: 10.2337/dc15-1419
  2. Podichetty J. T., Lang P., O'Doherty I. M. et al. Leveraging real world data for EMA qualification of a model-based biomarker tool to optimize type-1 diabetes prevention studies // Clin. Pharmacol. Ther. 2022. Vol. 111, N 5. P. 1133–1141. doi: 10.1002/cpt.2559
  3. McLaughlin K. A., Richardson C. C., Ravishankar A. et al. Identification of Tetraspanin-7 as a target of autoantibodies in type 1 diabetes // Diabetes. 2016. Vol. 65, N 6. P. 1690–1698. doi: 10.2337/db15-1058
  4. Carr A. L.J., Evans-Molina C., Oram RA. Precision medicine in type 1 diabetes // Diabetologia. 2022. Vol. 65, N 11. P. 1854–1866. doi: 10.1007/s00125-022-05778-3
  5. Chung W. K., Erion K., Florez J. C. et al. Precision medicine in diabetes: a Consensus Report from the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) // Diabetologia. 2020. Vol. 63, N 9. P. 1671–1693. doi: 10.1007/s00125-020-05181-w
  6. Gradisteanu Pircalabioru G., Corcionivoschi N., Gundogdu O. et al. Dysbiosis in the development of type i diabetes and associated complications: from mechanisms to targeted gut microbes manipulation therapies // Int. J. Mol. Sci. 2021. Vol. 22, N 5. P. 2763. doi: 10.3390/ijms22052763
  7. Alcazar O., Hernandez L. F., Nakayasu E. S. et al. Parallel multi omics in high risk subjects for the identification of integrated biomarker signatures of type 1 diabetes // Biomolecules. 2021. Vol. 11, N 3. P. 383. doi: 10.3390/biom11030383
  8. Xhonneux L. P., Knight O., Lernmark Å. et al. Transcriptional networks in at risk individuals identify signatures of type 1 diabetes progression // Sci. Transl. Med. 2021. Vol. 13. P. eabd5666. doi: 10.1126/scitranslmed.abd5666
  9. Rodriguez-Calvo T. Enterovirus infection and type 1 diabetes: Unraveling the crime scene // Clin. Exp. Immunol. 2019. Vol. 195. P. 15–24. doi: 10.1111/cei.13223
  10. Faulkner C. L., Luo Y. X., Isaacs S. et al. The virome in early life and childhood and development of islet autoimmunity and type 1 diabetes: a systematic review and meta analysis of observational studies // Rev. Med. Virol. 2020. P. e2209. doi: 10.1002/rmv.2209
  11. Blanter M., Sork H., Tuomela S., Flodström-Tullberg M. Genetic and environmental interaction in type 1 diabetes: a relationship between genetic risk alleles and molecular traits of enterovirus infection? // Curr. Diabetes Rep. 2019; Vol. 19. P. 82. doi: 10.1007/s11892-019-1192-8
  12. Paun A., Yau C., Meshkibaf S. et al. Association of HLA dependent islet autoimmunity with systemic antibody responses to intestinal commensal bacteria in children // Sci. Immunol. 2019. Vol. 4. P. eaau8125. doi: 10.1126/sciimmunol.aau8125
  13. Isaacs S. R., Foskett D. B., Maxwell A. J. et al. Viruses and type 1 diabetes: from enteroviruses to the virome // Microorganisms. 2021. Vol. 9, N 7. P. 1519. doi: 10.3390/microorganisms9071519
  14. Root-Bernstein R., Chiles K., Huber J. et al. Clostridia and enteroviruses as synergistic triggers of type 1 diabetes mellitus // Int. J. Mol. Sci. 2023. Vol. 24, N 9. P. 8336. doi: 10.3390/ijms24098336
  15. Nekoua M. P., Mercier A., Alhazmi A. et al. Fighting enteroviral infections to prevent type 1 diabetes // Microorganisms. 2022. Vol. 10, N 4. P. 768. doi: 10.3390/microorganisms10040768
  16. Ishmukhametov A. A., Siniugina А.А., Chumakov K. M. The development of polio vaccines: the current update (review) // Sovremennye tehnologii v medicine. 2019. Vol. 11, N 4. P. 200–215. doi: 10.17691/stm2019.11.4.22
  17. Hu Y., Zeng G., Chu K. et al. Five-year immunity persistence following immunization with inactivated enterovirus 71 type (EV71) vaccine in healthy children: a further observation // Hum. Vaccines Immunother. 2018. Vol. 14. P. 1517–1523. doi: 10.1080/21645515.2018
  18. Stone V. M., Hankaniemi M. M., Laitinen O. H. et al. A hexavalent Coxsackievirus B vaccine is highly immunogenic and has a strong protective capacity in mice and nonhuman primates // Sci. Adv. 2020. Vol. 6, N 19. P. eaaz2433. doi: 10.1126/sciadv.aaz2433
  19. Hankaniemi M. M., Baikoghli M. A., Stone V. M. et al. Structural Insight into CVB3-VLP Non-Adjuvanted Vaccine // Microorganisms. 2020. Vol. 8, N 9. P. 1287. doi: 10.3390/microorganisms8091287
  20. Beik P., Ciesielska M., Kucza M. et al. Prevention of type 1 diabetes: past experiences and future opportunities // J. Clin. Med. 2020. Vol. 9, N 9. P. 2805. doi: 10.3390/jcm9092805
  21. Movahed A., Raj P., Nabipour I. et al. Efficacy and safety of resveratrol in type 1 diabetes patients: a two-month preliminary exploratory trial // Nutrients. 2020. Vol. 12, N 1. P. 161. doi: 10.3390/nu12010161
  22. Ku C. R., Lee H. J., Kim S. K. et al. Resveratrol prevents streptozotocin induced diabetes by inhibiting the apoptosis of pancreatic β cell and the cleavage of poly (ADP-ribose) polymerase // Endocr. J. 2012. Vol. 59, N 2. P. 103–109. doi: 10.1507/endocrj.ej11-0194
  23. Franić Z., Franić Z., Vrkić N. et al. Effect of extract from Boswellia serrata gum resin on decrease of GAD65 autoantibodies in a patient with latent autoimmune diabetes in adults // Altern. Ther. Health Med. 2020. Vol. 26, N 5. P. 38–40.
  24. Gavin P. G., Hamilton-Williams E. E. The gut microbiota in type 1 diabetes: friend or foe? // Curr. Opin. Endocrinol. Diabetes Obes. 2019. Vol. 26, N 4. P. 207–212. doi: 10.1097/MED.0000000000000483
  25. Hansen C. H.F., Krych L., Nielsen D. S. et al. Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse // Diabetologia. 2012. Vol. 55. P. 2285–2294.
  26. Candon S., Perez-Arroyo A., Marquet C. et al. Antibiotics in early life alter the gut microbiome and increase disease incidence in a spontaneous mouse model of autoimmune insulin-dependent diabetes // PLoS One. 2015. Vol. 10. P. e0125448.
  27. Hu Y., Jin P., Peng J. et al. Different immunological responses to early-life antibiotic exposure affecting autoimmune diabetes development in NOD mice // J. Autoimmun. 2016. Vol. 72. P. 47–56. doi: 10.1016/j.jaut.2016.05.001
  28. Livanos A. E., Greiner T. U., Vangay P. et al. Antibiotic-mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice // Nat. Microbiol. 2016. Vol. 1, N 11. P. 16140. doi: 10.1038/nmicrobiol.2016.140
  29. Zhang Y., Lee A. S., Shameli A. et al. TLR9 blockade inhibits activation of diabetogenic CD8+ T cells and delays autoimmune diabetes // J. Immunol. 2010. Vol. 184. P. 5645–5653.
  30. Gülden E., Ihira M., Ohashi A. et al. Toll-like receptor 4 deficiency accelerates the development of insulin-deficient diabetes in non-obese diabetic mice // PLoS One. 2013. Vol. 8. P. e75385. doi: 10.1371/journal.pone.0075385
  31. Alkanani A. K., Hara N., Lien E. et al. Induction of diabetes in the RIP-B7.1 mouse model is critically dependent on TLR3 and MyD88 pathways and is associated with alterations in the intestinal microbiome // Diabetes. 2013. Vol. 63. P. 619–631.
  32. Zhou H., Sun L., Zhang S. et al. Evaluating the causal role of gut microbiota in type 1 diabetes and its possible pathogenic mechanisms // Front. Endocrinol. 2020. Vol. 11. P. 125. doi: 10.3389/fendo.2020.00125
  33. Warshauer J. T., Bluestone J. A., Anderson M. S. New frontiers in the treatment of type 1 diabetes // Cell Metab. 2020. Vol. 31, N 1. P. 46–61. doi: 10.1016/j.cmet.2019.11.017
  34. Herold K. C., Bundy B. N., Long S. A. et al. An anti-CD3 antibody, Teplizumab, in relatives at risk for type 1 diabetes // N. Engl. J. Med. 2019. Vol. 381, N 7. P. 603–613. doi: 10.1056/NEJMoa1902226
  35. Sims E. K., Cuthbertson D., Herold K. C., Sosenko J. M. The deterrence of rapid metabolic decline within 3 months after Teplizumab treatment in individuals at high risk for type 1 diabetes // Diabetes. 2021. Vol. 70, N 12. P. 2922–2931. doi: 10.2337/db21-0519
  36. Nourelden A. Z., Elshanbary A. A., El-Sherif L. et al. Safety and efficacy of Teplizumab for Treatment of type one diabetes mellitus: a systematic review and meta analysis // Endocr. Metab. Immune Disord. Drug Targets. 2021. Vol. 21, N 10. P. 1895–1904. doi: 10.2174/1871530320999201209222921
  37. Russell W. E., Bundy B. N., Anderson M. S. et al. Abatacept for delay of type 1 diabetes progression in stage 1 relatives at risk: a randomized, double masked, controlled trial // Diabetes Care. 2023. Vol. 46, N 5. P. 1005–1013. doi: 10.2337/dc22-2200
  38. Guyot M., Simon T., Ceppo F. et al. Pancreatic nerve electrostimulation inhibits recent-onset autoimmune diabetes // Nat. Biotechnol. 2019. Vol. 37, N 12. P. 1446–1451. doi: 10.1038/s41587-019-0295-8
  39. Thompson P. J., Shah A., Ntranos V. et al. Targeted elimination of senescent beta cells prevents type 1 diabetes // Cell Metab. 2019. Vol. 29, N 5. P. 1045–1060.e10. doi: 10.1016/j.cmet.2019.01.021
  40. Chaillous L., Lefèvre H., Thivolet C. et al. Oral insulin administration and residual beta-cell function in recent-onset type 1 diabetes: a multicentre randomised controlled trial // Diabète Insuline Orale group. Lancet. 2000. Vol. 356, N 9229. P. 545–549. doi: 10.1016/s0140-6736(00)02579–4
  41. Fourlanos S., Perry C., Gellert S. A. et al. Evidence that nasal insulin induces immune tolerance to insulin in adults with autoimmune diabetes // Diabetes. 2011. Vol. 60, N 4. P. 1237–1245. doi: 10.2337/db10-1360
  42. Alhadj A. M., Liu Y. F., Arif S. et al. Metabolic and immune effects of immunotherapy with proinsulin peptide in human new-onset type 1 diabetes // Sci. Transl. Med. 2017. Vol. 9, N 402. P. eaaf7779. doi: 10.1126/scitranslmed.aaf7779
  43. Ludvigsson J., Krisky D., Casas R. et al. GAD65 antigen therapy in recently diagnosed type 1 diabetes mellitus // N. Engl. J. Med. 2012. Vol. 366, N 5. P. 433–442. doi: 10.1056/NEJMoa1107096
  44. Ziegler A. G., Achenbach P., Berner R. et al. Oral insulin therapy for primary prevention of type 1 diabetes in infants with high genetic risk: the GPPAD-POInT (global platform for the prevention of autoimmune diabetes primary oral insulin trial) study protocol // BMJ Open. 2019. Vol. 9, N 6. P. e028578. doi: 10.1136/bmjopen-2018-028578
  45. Sosenko J. M., Skyler J. S., Herold K. C. et al. Slowed metabolic decline after 1 year of oral insulin treatment among individuals at high risk for type 1 diabetes in the Diabetes Prevention Trial-Type 1 (DPT-1) and TrialNet Oral Insulin Prevention Trials // Diabetes. 2020. Vol. 69, N 8. P. 1827–1832. doi: 10.2337/db20-0166
  46. Ludvigsson J. Autoantigen treatment in type 1 diabetes: unsolved questions on how to select autoantigen and administration route // Int. J. Mol. Sci. 2020. Vol. 21, N 5. P. 1598. doi: 10.3390/ijms21051598
  47. Zhou X., Zhang S., Yu F. et al. Tolerogenic vaccine composited with islet-derived multipeptides and cyclosporin A induces pTreg and prevents Type 1 diabetes in murine model // Hum. Vaccin. Immunother. 2020. Vol. 16, N 2. P. 240–250. doi: 10.1080/21645515.2019.1616504
  48. Khan F. U., Khongorzul P., Raki A. A. et al. Dendritic cells and their immunotherapeutic potential for treating type 1 diabetes // Int. J. Mol. Sci. 2022. Vol. 23. P. 4885. doi: 10.3390/ijms23094885
  49. Phillips B. E., Garciafigueroa Y., Engman C. et al. Tolerogenic dendritic cells and T-regulatory cells at the clinical trials crossroad for the treatment of autoimmune disease; emphasis on type 1 diabetes therapy // Front. Immunol. 2019. Vol. 10. P. 148. doi: 10.3389/fimmu.2019.00148
  50. Serra P., Santamaria P. Peptide-MHC-based nanomedicines for the treatment of autoimmunity: engineering, mechanisms, and diseases // Front. Immunol. 2021. Vol. 11. P. 621774. doi: 10.3389/fimmu.2020.621774
  51. Postigo-Fernandez J., Firdessa-Fite R., Creusot R. J. Preclinical evaluation of a precision medicine approach to DNA vaccination in type 1 diabetes // Proc. Natl. Acad. Sci. USA. 2022. Vol. 119, N 15. P. e2110987119. doi: 10.1073/pnas.2110987119
  52. Kühtreiber W. M., Faustman D. L. BCG therapy for type 1 diabetes: restoration of balanced immunity and metabolism // Trends. Endocrinol. Metab. 2019. Vol. 30, N 2. P. 80–92. doi: 10.1016/j.tem.2018.11.006
  53. Takahashi H., Kühtreiber W. M., Keefe R. C. et al. BCG vaccinations drive epigenetic changes to the human T cell receptor: Restored expression in type 1 diabetes // Sci. Adv. 2022. Vol. 8, N 46. P. eabq7240. doi: 10.1126/sciadv.abq7240
  54. Dias H. F., Mochizuki Y., Kühtreiber W. M. et al. Bacille Calmette Guerin (BCG) and prevention of types 1 and 2 diabetes: results of two observational studies // PLoS One. 2023. Vol. 18, N 1. P. e0276423. doi: 10.1371/journal.pone.0276423

Statistics

Views

Abstract - 3

PDF (Russian) - 1

Cited-By


PlumX

Dimensions


Copyright (c) 1970 АО "Шико"

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Mailing Address

Address: 105064, Vorontsovo Pole, 12, Moscow

Email: ttcheglova@gmail.com

Phone: +7 903 671-67-12

Principal Contact

Tatyana Sheglova
Head of the editorial office
FSSBI «N.A. Semashko National Research Institute of Public Health»

105064, Vorontsovo Pole st., 12, Moscow


Phone: +7 903 671-67-12
Email: redactor@journal-nriph.ru

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies