ACTUAL STRATEGIES FOR PREVENTING TYPE-1 DIABETES: INTERNATIONAL LITERATURE REVIEW
- Authors: Grechushkina N.A.1
- Affiliations:
- Research Institute for Healthcare Organization and Medical Management, 115088, Moscow, Russia
- Issue: Vol 31 (2023): NO ()
- Pages: 1189-1196
- Section: Articles
- URL: https://journal-nriph.ru/journal/article/view/2103
- DOI: https://doi.org/10.32687/0869-866X-2023-31-s2-1189-1196
- Cite item
Abstract
The exact etiology and mechanisms that trigger the development of type 1 diabetes mellitus (DM1) are not conclusively studied. However, there is increasing scientific evidence that damage to pancreatic islet cells (β-cells) in genetically predisposed individuals is initiated by environmental factors. Currently, the main tactic of DM1 treatment at the stage of clinical manifestations is based on insulin replacement therapy. The introduction of modern insulin drugs and devices for its delivery, as well as continuous glucose monitoring systems into medical practice does not relieve patients from the need to take this hormone for life. Therefore, the development of methods to prevent DM1 remains the main task of diabetes research. This article was prepared based on a review of current publications from the PubMed bibliographic database. The article discusses strategies targeting environmental triggers, methods to regulate the immune response using current cellular approaches and novel autoantigens, as well as off-target effects of the BCG vaccine and general principles of personalized prevention.
About the authors
N. A. Grechushkina
Research Institute for Healthcare Organization and Medical Management, 115088, Moscow, Russia
References
- Insel R. A., Dunne J. L., Atkinson M. A. et al. Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association // Diabetes Care. 2015. Vol. 38, N 10. P. 1964–1974. doi: 10.2337/dc15-1419
- Podichetty J. T., Lang P., O'Doherty I. M. et al. Leveraging real world data for EMA qualification of a model-based biomarker tool to optimize type-1 diabetes prevention studies // Clin. Pharmacol. Ther. 2022. Vol. 111, N 5. P. 1133–1141. doi: 10.1002/cpt.2559
- McLaughlin K. A., Richardson C. C., Ravishankar A. et al. Identification of Tetraspanin-7 as a target of autoantibodies in type 1 diabetes // Diabetes. 2016. Vol. 65, N 6. P. 1690–1698. doi: 10.2337/db15-1058
- Carr A. L.J., Evans-Molina C., Oram RA. Precision medicine in type 1 diabetes // Diabetologia. 2022. Vol. 65, N 11. P. 1854–1866. doi: 10.1007/s00125-022-05778-3
- Chung W. K., Erion K., Florez J. C. et al. Precision medicine in diabetes: a Consensus Report from the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) // Diabetologia. 2020. Vol. 63, N 9. P. 1671–1693. doi: 10.1007/s00125-020-05181-w
- Gradisteanu Pircalabioru G., Corcionivoschi N., Gundogdu O. et al. Dysbiosis in the development of type i diabetes and associated complications: from mechanisms to targeted gut microbes manipulation therapies // Int. J. Mol. Sci. 2021. Vol. 22, N 5. P. 2763. doi: 10.3390/ijms22052763
- Alcazar O., Hernandez L. F., Nakayasu E. S. et al. Parallel multi omics in high risk subjects for the identification of integrated biomarker signatures of type 1 diabetes // Biomolecules. 2021. Vol. 11, N 3. P. 383. doi: 10.3390/biom11030383
- Xhonneux L. P., Knight O., Lernmark Å. et al. Transcriptional networks in at risk individuals identify signatures of type 1 diabetes progression // Sci. Transl. Med. 2021. Vol. 13. P. eabd5666. doi: 10.1126/scitranslmed.abd5666
- Rodriguez-Calvo T. Enterovirus infection and type 1 diabetes: Unraveling the crime scene // Clin. Exp. Immunol. 2019. Vol. 195. P. 15–24. doi: 10.1111/cei.13223
- Faulkner C. L., Luo Y. X., Isaacs S. et al. The virome in early life and childhood and development of islet autoimmunity and type 1 diabetes: a systematic review and meta analysis of observational studies // Rev. Med. Virol. 2020. P. e2209. doi: 10.1002/rmv.2209
- Blanter M., Sork H., Tuomela S., Flodström-Tullberg M. Genetic and environmental interaction in type 1 diabetes: a relationship between genetic risk alleles and molecular traits of enterovirus infection? // Curr. Diabetes Rep. 2019; Vol. 19. P. 82. doi: 10.1007/s11892-019-1192-8
- Paun A., Yau C., Meshkibaf S. et al. Association of HLA dependent islet autoimmunity with systemic antibody responses to intestinal commensal bacteria in children // Sci. Immunol. 2019. Vol. 4. P. eaau8125. doi: 10.1126/sciimmunol.aau8125
- Isaacs S. R., Foskett D. B., Maxwell A. J. et al. Viruses and type 1 diabetes: from enteroviruses to the virome // Microorganisms. 2021. Vol. 9, N 7. P. 1519. doi: 10.3390/microorganisms9071519
- Root-Bernstein R., Chiles K., Huber J. et al. Clostridia and enteroviruses as synergistic triggers of type 1 diabetes mellitus // Int. J. Mol. Sci. 2023. Vol. 24, N 9. P. 8336. doi: 10.3390/ijms24098336
- Nekoua M. P., Mercier A., Alhazmi A. et al. Fighting enteroviral infections to prevent type 1 diabetes // Microorganisms. 2022. Vol. 10, N 4. P. 768. doi: 10.3390/microorganisms10040768
- Ishmukhametov A. A., Siniugina А.А., Chumakov K. M. The development of polio vaccines: the current update (review) // Sovremennye tehnologii v medicine. 2019. Vol. 11, N 4. P. 200–215. doi: 10.17691/stm2019.11.4.22
- Hu Y., Zeng G., Chu K. et al. Five-year immunity persistence following immunization with inactivated enterovirus 71 type (EV71) vaccine in healthy children: a further observation // Hum. Vaccines Immunother. 2018. Vol. 14. P. 1517–1523. doi: 10.1080/21645515.2018
- Stone V. M., Hankaniemi M. M., Laitinen O. H. et al. A hexavalent Coxsackievirus B vaccine is highly immunogenic and has a strong protective capacity in mice and nonhuman primates // Sci. Adv. 2020. Vol. 6, N 19. P. eaaz2433. doi: 10.1126/sciadv.aaz2433
- Hankaniemi M. M., Baikoghli M. A., Stone V. M. et al. Structural Insight into CVB3-VLP Non-Adjuvanted Vaccine // Microorganisms. 2020. Vol. 8, N 9. P. 1287. doi: 10.3390/microorganisms8091287
- Beik P., Ciesielska M., Kucza M. et al. Prevention of type 1 diabetes: past experiences and future opportunities // J. Clin. Med. 2020. Vol. 9, N 9. P. 2805. doi: 10.3390/jcm9092805
- Movahed A., Raj P., Nabipour I. et al. Efficacy and safety of resveratrol in type 1 diabetes patients: a two-month preliminary exploratory trial // Nutrients. 2020. Vol. 12, N 1. P. 161. doi: 10.3390/nu12010161
- Ku C. R., Lee H. J., Kim S. K. et al. Resveratrol prevents streptozotocin induced diabetes by inhibiting the apoptosis of pancreatic β cell and the cleavage of poly (ADP-ribose) polymerase // Endocr. J. 2012. Vol. 59, N 2. P. 103–109. doi: 10.1507/endocrj.ej11-0194
- Franić Z., Franić Z., Vrkić N. et al. Effect of extract from Boswellia serrata gum resin on decrease of GAD65 autoantibodies in a patient with latent autoimmune diabetes in adults // Altern. Ther. Health Med. 2020. Vol. 26, N 5. P. 38–40.
- Gavin P. G., Hamilton-Williams E. E. The gut microbiota in type 1 diabetes: friend or foe? // Curr. Opin. Endocrinol. Diabetes Obes. 2019. Vol. 26, N 4. P. 207–212. doi: 10.1097/MED.0000000000000483
- Hansen C. H.F., Krych L., Nielsen D. S. et al. Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse // Diabetologia. 2012. Vol. 55. P. 2285–2294.
- Candon S., Perez-Arroyo A., Marquet C. et al. Antibiotics in early life alter the gut microbiome and increase disease incidence in a spontaneous mouse model of autoimmune insulin-dependent diabetes // PLoS One. 2015. Vol. 10. P. e0125448.
- Hu Y., Jin P., Peng J. et al. Different immunological responses to early-life antibiotic exposure affecting autoimmune diabetes development in NOD mice // J. Autoimmun. 2016. Vol. 72. P. 47–56. doi: 10.1016/j.jaut.2016.05.001
- Livanos A. E., Greiner T. U., Vangay P. et al. Antibiotic-mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice // Nat. Microbiol. 2016. Vol. 1, N 11. P. 16140. doi: 10.1038/nmicrobiol.2016.140
- Zhang Y., Lee A. S., Shameli A. et al. TLR9 blockade inhibits activation of diabetogenic CD8+ T cells and delays autoimmune diabetes // J. Immunol. 2010. Vol. 184. P. 5645–5653.
- Gülden E., Ihira M., Ohashi A. et al. Toll-like receptor 4 deficiency accelerates the development of insulin-deficient diabetes in non-obese diabetic mice // PLoS One. 2013. Vol. 8. P. e75385. doi: 10.1371/journal.pone.0075385
- Alkanani A. K., Hara N., Lien E. et al. Induction of diabetes in the RIP-B7.1 mouse model is critically dependent on TLR3 and MyD88 pathways and is associated with alterations in the intestinal microbiome // Diabetes. 2013. Vol. 63. P. 619–631.
- Zhou H., Sun L., Zhang S. et al. Evaluating the causal role of gut microbiota in type 1 diabetes and its possible pathogenic mechanisms // Front. Endocrinol. 2020. Vol. 11. P. 125. doi: 10.3389/fendo.2020.00125
- Warshauer J. T., Bluestone J. A., Anderson M. S. New frontiers in the treatment of type 1 diabetes // Cell Metab. 2020. Vol. 31, N 1. P. 46–61. doi: 10.1016/j.cmet.2019.11.017
- Herold K. C., Bundy B. N., Long S. A. et al. An anti-CD3 antibody, Teplizumab, in relatives at risk for type 1 diabetes // N. Engl. J. Med. 2019. Vol. 381, N 7. P. 603–613. doi: 10.1056/NEJMoa1902226
- Sims E. K., Cuthbertson D., Herold K. C., Sosenko J. M. The deterrence of rapid metabolic decline within 3 months after Teplizumab treatment in individuals at high risk for type 1 diabetes // Diabetes. 2021. Vol. 70, N 12. P. 2922–2931. doi: 10.2337/db21-0519
- Nourelden A. Z., Elshanbary A. A., El-Sherif L. et al. Safety and efficacy of Teplizumab for Treatment of type one diabetes mellitus: a systematic review and meta analysis // Endocr. Metab. Immune Disord. Drug Targets. 2021. Vol. 21, N 10. P. 1895–1904. doi: 10.2174/1871530320999201209222921
- Russell W. E., Bundy B. N., Anderson M. S. et al. Abatacept for delay of type 1 diabetes progression in stage 1 relatives at risk: a randomized, double masked, controlled trial // Diabetes Care. 2023. Vol. 46, N 5. P. 1005–1013. doi: 10.2337/dc22-2200
- Guyot M., Simon T., Ceppo F. et al. Pancreatic nerve electrostimulation inhibits recent-onset autoimmune diabetes // Nat. Biotechnol. 2019. Vol. 37, N 12. P. 1446–1451. doi: 10.1038/s41587-019-0295-8
- Thompson P. J., Shah A., Ntranos V. et al. Targeted elimination of senescent beta cells prevents type 1 diabetes // Cell Metab. 2019. Vol. 29, N 5. P. 1045–1060.e10. doi: 10.1016/j.cmet.2019.01.021
- Chaillous L., Lefèvre H., Thivolet C. et al. Oral insulin administration and residual beta-cell function in recent-onset type 1 diabetes: a multicentre randomised controlled trial // Diabète Insuline Orale group. Lancet. 2000. Vol. 356, N 9229. P. 545–549. doi: 10.1016/s0140-6736(00)02579–4
- Fourlanos S., Perry C., Gellert S. A. et al. Evidence that nasal insulin induces immune tolerance to insulin in adults with autoimmune diabetes // Diabetes. 2011. Vol. 60, N 4. P. 1237–1245. doi: 10.2337/db10-1360
- Alhadj A. M., Liu Y. F., Arif S. et al. Metabolic and immune effects of immunotherapy with proinsulin peptide in human new-onset type 1 diabetes // Sci. Transl. Med. 2017. Vol. 9, N 402. P. eaaf7779. doi: 10.1126/scitranslmed.aaf7779
- Ludvigsson J., Krisky D., Casas R. et al. GAD65 antigen therapy in recently diagnosed type 1 diabetes mellitus // N. Engl. J. Med. 2012. Vol. 366, N 5. P. 433–442. doi: 10.1056/NEJMoa1107096
- Ziegler A. G., Achenbach P., Berner R. et al. Oral insulin therapy for primary prevention of type 1 diabetes in infants with high genetic risk: the GPPAD-POInT (global platform for the prevention of autoimmune diabetes primary oral insulin trial) study protocol // BMJ Open. 2019. Vol. 9, N 6. P. e028578. doi: 10.1136/bmjopen-2018-028578
- Sosenko J. M., Skyler J. S., Herold K. C. et al. Slowed metabolic decline after 1 year of oral insulin treatment among individuals at high risk for type 1 diabetes in the Diabetes Prevention Trial-Type 1 (DPT-1) and TrialNet Oral Insulin Prevention Trials // Diabetes. 2020. Vol. 69, N 8. P. 1827–1832. doi: 10.2337/db20-0166
- Ludvigsson J. Autoantigen treatment in type 1 diabetes: unsolved questions on how to select autoantigen and administration route // Int. J. Mol. Sci. 2020. Vol. 21, N 5. P. 1598. doi: 10.3390/ijms21051598
- Zhou X., Zhang S., Yu F. et al. Tolerogenic vaccine composited with islet-derived multipeptides and cyclosporin A induces pTreg and prevents Type 1 diabetes in murine model // Hum. Vaccin. Immunother. 2020. Vol. 16, N 2. P. 240–250. doi: 10.1080/21645515.2019.1616504
- Khan F. U., Khongorzul P., Raki A. A. et al. Dendritic cells and their immunotherapeutic potential for treating type 1 diabetes // Int. J. Mol. Sci. 2022. Vol. 23. P. 4885. doi: 10.3390/ijms23094885
- Phillips B. E., Garciafigueroa Y., Engman C. et al. Tolerogenic dendritic cells and T-regulatory cells at the clinical trials crossroad for the treatment of autoimmune disease; emphasis on type 1 diabetes therapy // Front. Immunol. 2019. Vol. 10. P. 148. doi: 10.3389/fimmu.2019.00148
- Serra P., Santamaria P. Peptide-MHC-based nanomedicines for the treatment of autoimmunity: engineering, mechanisms, and diseases // Front. Immunol. 2021. Vol. 11. P. 621774. doi: 10.3389/fimmu.2020.621774
- Postigo-Fernandez J., Firdessa-Fite R., Creusot R. J. Preclinical evaluation of a precision medicine approach to DNA vaccination in type 1 diabetes // Proc. Natl. Acad. Sci. USA. 2022. Vol. 119, N 15. P. e2110987119. doi: 10.1073/pnas.2110987119
- Kühtreiber W. M., Faustman D. L. BCG therapy for type 1 diabetes: restoration of balanced immunity and metabolism // Trends. Endocrinol. Metab. 2019. Vol. 30, N 2. P. 80–92. doi: 10.1016/j.tem.2018.11.006
- Takahashi H., Kühtreiber W. M., Keefe R. C. et al. BCG vaccinations drive epigenetic changes to the human T cell receptor: Restored expression in type 1 diabetes // Sci. Adv. 2022. Vol. 8, N 46. P. eabq7240. doi: 10.1126/sciadv.abq7240
- Dias H. F., Mochizuki Y., Kühtreiber W. M. et al. Bacille Calmette Guerin (BCG) and prevention of types 1 and 2 diabetes: results of two observational studies // PLoS One. 2023. Vol. 18, N 1. P. e0276423. doi: 10.1371/journal.pone.0276423