THE PRESENT-DAY EPIDEMIOLOGY: CHALLENGES OF PUBLIC HEALTH AND POSSIBILITIES TO SETTLE THEM: THE PUBLICATIONS REVIEW

Abstract


Actually, the epidemiology is a dynamically developing medical science located at the intersection of social and biological branches of knowledge and bio-informatics. The new sources of data, the new methods create unique opportunities for epidemiologist. The number of epidemiological studies carrying out at the junction of several adjacent disciplines is increasing that requires harmonious interaction of specialists of different branches of medical knowledge. The change of the structure of global mortality towards chronic non-communicable diseases significantly affected the vector of epidemiological studies. Many interventional epidemiological projects are targeted to evaluation of effectiveness of new methods of prevention of cardiovascular, metabolic and oncological diseases. However, in recent years, the fight against unremembered infections affecting about 1 billion of people and taking away lives of 0.5 million people annually gained new importance. The current COVID-19 pandemic also affected epidemiology of communicable and chronic non-communicable diseases. Great attention is also currently attended to studying influence of social, economic and environmental factors on human health. The increase of average life expectancy of population contributes to development of epidemiology of the elderly. The new projects are initiated in the field of pharmacoepidemiology targeted to studying effectiveness of medications. The review of national and foreign publications considering current trends and achievements in the field of epidemiology. The reference retrieval engines such as PubMed, Google Scholar, CyberLeninka were used. The current directions of epidemiological research are analyzed. The challenges and development prospects of development of modern epidemiology are highlighted.

About the authors

S. D. Kazakov

The Federal State Budget Educational Institution of Higher Education “The Siberian State Medical University” of the Minzdrav of Russia, 634050, Tomsk, Russia

E. M. Kamenskikh

The Federal State Budget Educational Institution of Higher Education “The Siberian State Medical University” of the Minzdrav of Russia, 634050, Tomsk, Russia

T. S. Sokolova

The Federal State Budget Educational Institution of Higher Education “The Siberian State Medical University” of the Minzdrav of Russia, 634050, Tomsk, Russia

О. S. Fedorova

The Federal State Budget Educational Institution of Higher Education “The Siberian State Medical University” of the Minzdrav of Russia, 634050, Tomsk, Russia

References

  1. Ротарь О. П. Эпидемиология: вчера, сегодня, завтра (краткий экскурс в историю эпидемиологии и обзор наиболее актуальных проблем). Артериальная гипертензия. 2015;21(3):224—30. doi: 10.18705/1607-419X-2015-21-3-224-230
  2. Omran A. R. The Epidemiologic Transition: A Theory of the Epidemiology of Population Change. Milbank Q. 2005;83(4):731—57. doi: 10.1111/j.1468-0009.2005.00398.x
  3. Бойцов С. А. Актуальные направления и новые данные в эпидемиологии и профилактике неинфекционных заболеваний. Терапевтический архив. 2016;88(1):4—10. doi: 10.17116/terarkh20168814-10
  4. Santosa A., Wall S., Fottrell E., Högberg U., Byass P. The development and experience of epidemiological transition theory over four decades: a systematic review. Glob. Health Action. 2014 May 15;7:23574. doi: 10.3402/gha.v7.23574
  5. Firestone R., Cheng S., Pearce N., Douwes J., Merletti F., Pizzi C., et al. Internet-Based Birth-Cohort Studies: Is This the Future for Epidemiology? JMIR Res. Protocols. 2015;4(2):e3873. doi: 10.2196/resprot.3873
  6. Christensen T., Riis A. H., Hatch E. E., Wise L. A., Nielsen M. G., Rothman K. J., et al. Costs and Efficiency of Online and Offline Recruitment Methods: A Web-Based Cohort Study. J. Med. Internet Res. 2017;19(3):e6716. doi: 10.2196/jmir.6716
  7. Nye R. T., Hill D. L., Carroll K. W., Boyden J. Y., Katcoff H., Griffis H., et al. The Design of a Data Management System for a Multicenter Palliative Care Cohort Study. J. Pain Symptom Manage. 2022;64(1):e53—e60. doi: 10.1016/j.jpainsymman.2022.03.007
  8. Griffin A. C., Topaloglu U., Davis S., Chung A. E. From Patient Engagement to Precision Oncology: Leveraging Informatics to Advance Cancer Care. Yearb Med. Inform. 2020;29(1):235—42. doi: 10.1055/s-0040-1701983
  9. Health eHeart Study. Режим доступа: https://www.health-eheartstudy.org/?locale=en (дата обращения 17.05.2022).
  10. Avram R., Tison G. H., Aschbacher K., Kuhar P., Vittinghoff E., Butzner M., et al. Real-world heart rate norms in the Health eHeart study. NPJ Digit. Med. 2019;2:58. doi: 10.1038/s41746-019-0134-9
  11. Heise J. K., Dey R., Emmerich M., Kemmling Y., Sistig S., Krause G., et al. Putting digital epidemiology into practice: PIA-Prospective Monitoring and Management Application. Inform. Med. Unlocked. 2022;30:100931. doi: 10.1016/j.imu.2022.100931
  12. Balleier C., Floßdorf E., Hochbruck M., Kiefer F. Der Kodex “Leitlinien zur Sicherung guter wissenschaftlicher Praxis” der DFG. Mitteilungen der Deutschen Mathematiker-Vereinigung. 2021;29(4):239—42. doi: 10.1515/dmvm-2021-0085
  13. Overhage J. M., Ryan P. B., Reich C. G., Hartzema A. G., Stang P. E. Validation of a common data model for active safety surveillance research. J. Am. Med. Inform. Assoc. 2012;19(1):54—60. doi: 10.1136/amiajnl-2011-000376
  14. Hripcsak G., Duke J. D., Shah N. H., et al. Observational Health Data Sciences and Informatics (OHDSI): Opportunities for Observational Researchers. Stud. Health Technol. Inform. 2015;216:574—8.
  15. Informatics Observational Health Data Sciences and. Chapter 1 The OHDSI Community. The Book of OHDSI. Режим доступа: https://ohdsi.github.io/TheBookOfOhdsi/ (дата обращения 15.05.2022).
  16. Kuller L. H. Epidemiologists of the Future: Data Collectors or Scientists? Am. J. Epidemiol. 2019;188(5):890—5. doi: 10.1093/aje/kwy221
  17. Dammann O., Gray P., Gressens P., Wolkenhauer O., Leviton A. Systems Epidemiology: What’s in a Name? Online J. Pub. Health Inform. 2014;6(3):e198. doi: 10.5210/ojphi.v6i3.5571
  18. Wolfson J., Stovitz S. D., Blair S. N., Sui X., Duck-chul L., Shrier I. Decomposing the effects of physical activity and cardiorespiratory fitness on mortality. Glob. Epidemiol. 2019;1:100009. doi: 10.1016/j.gloepi.2019.100009
  19. Lagström H., Stenholm S., Akbaraly T., Pentti J., Vahtera J., Kivimäki M., et al. Diet quality as a predictor of cardiometabolic disease–free life expectancy: the Whitehall II cohort study. Am. J. Clin. Nutr. 2020;111(4):787—94. doi: 10.1093/ajcn/nqz329
  20. Suchard M. A., Schuemie M. J., Krumholz H. M., You S. C., Chen R., Pratt N., et al. Comprehensive comparative effectiveness and safety of first-line antihypertensive drug classes. Lancet. 2019;394(10211):1816—26. doi: 10.1016/S0140-6736(19)32317—7
  21. Park J., Choi J., Choi J. Y. Network Analysis in Systems Epidemiology. J. Prev. Med. Public Health. 2021;54(4):259—564. doi: 10.3961/jpmph.21.190
  22. Saracci R. Epidemiology in wonderland: Big Data and precision medicine. Eur. J. Epidemiol. 2018;33(3):245—57. doi: 10.1007/s10654-018-0385-9
  23. Yang A., Troup M., Ho J. W. K. Scalability and Validation of Big Data Bioinformatics Software. Comput. Struct. Biotechnol. J. 2017;15:379—86. doi: 10.1016/j.csbj.2017.07.002
  24. Samet J. M., Woodward A. On Being an Epidemiologist. Am. J. Epidemiol. 2019;188(5):818—24. doi: 10.1093/aje/kwy279
  25. Shah R., Pico A. R., Freedman J. E. Translational Epidemiology: Entering a Brave New World of Team Science. Circ. Res. 2016;119(10):1060—2. doi: 10.1161/CIRCRESAHA.116.309881
  26. Климонтов В. В., Бериков В. Б., Сайк О. В. Искусственный интеллект в диабетологии. Сахарный диабет. 2021;24(2):156—66. doi: 10.14341/DM12665
  27. Oster A. M., France A. M., Mermin J. Molecular Epidemiology and the Transformation of HIV Prevention. JAMA. 2018;319(16):1657—8. doi: 10.1001/jama.2018.1513
  28. Bensyl D. M., King M. E., Greiner A. Applied Epidemiology Training Needs for the Modern Epidemiologist. Am. J. Epidemiol. 2019;188(5):830—5. doi: 10.1093/aje/kwz052
  29. Thacker S. B., Dannenberg A. L., Hamilton D. H. Epidemic Intelligence Service of the Centers for Disease Control and Prevention: 50 Years of Training and Service in Applied Epidemiology. Am. J. Epidemiol. 2001;154(11):985—92. doi: 10.1093/aje/154.11.985
  30. Mukanga D., Namusisi O., Gitta S. N., Pariyo G., Tshimanga M., Weaver A., et al. Field Epidemiology Training Programmes in Africa — Where are the Graduates? Hum. Res. Health. 2010;8(1):18. doi: 10.1186/1478-4491-8-18
  31. Магистерская программа — 32.04.01. «Общественное здравоохранение» профиль «Эпидемиология». Режим доступа: https://www.sechenov.ru/univers/structure/institute/mpf/podrazdeleniya-mpf/kafedry/kafedra-epidemiologii-i-dokazatelnoy-meditsiny-mediko-profilakticheskogo-fakulteta/lorp/ (дата обращения 31.05.2022).
  32. Меньшикова Е. В Университете ИТМО запускается первый в России англоязычный магистерский трек Public Health Sciences. Режим доступа: https://news.itmo.ru/ru/education/students/news/10277/ (дата обращения 31.05.2022).
  33. Gardy J. L., Loman N. J. Towards a genomics-informed, real-time, global pathogen surveillance system. Nat. Rev. Genet. 2018;19(1):9—20. doi: 10.1038/nrg.2017.88
  34. Holmes E. C., Rambaut A., Andersen K. G. Pandemics: spend on surveillance, not prediction. Nature. 2018;558(7709):180—2. doi: 10.1038/d41586-018-05373-w
  35. Metcalf C. J. E., Farrar J., Cutts F. T., Basta N. E., Graham A. L., Lessler J., et al. Use of serological surveys to generate key insights into the changing global landscape of infectious disease. Lancet. 2016;388(10045):728—30. doi: 10.1016/S0140-6736(16)30164—7
  36. Crozier I. Mapping a Filoviral Serologic Footprint in the Democratic Republic of the Congo: Who Goes There? J. Infect. Dis. 2018;217(4):513—5. doi: 10.1093/infdis/jix620
  37. Wikan N., Smith D. R. Zika virus: history of a newly emerging arbovirus. Lancet Infect. Dis. 2016;16(7):e119—e126. doi: 10.1016/S1473-3099(16)30010-X
  38. Katzelnick L. C., Gresh L., Halloran M. E., Mercado J. C., Kuan G., Gordon A., et al. Antibody-dependent enhancement of severe dengue disease in humans. Science. 2017;358(6365):929—32. doi: 10.1126/science.aan6836
  39. Cobey S., Hensley S. E. Immune history and influenza virus susceptibility. Curr. Opin. Virol. 2017;22:105—11. doi: 10.1016/j.coviro.2016.12.004
  40. Talking about the Ebola Outbreak with BU Experts on the Disease. Boston University. Режим доступа: https://www.bu.edu/articles/2019/ebola/ (дата обращения 18.05.2022).
  41. Paez-Espino D., Eloe-Fadrosh E. A., Pavlopoulos G. A., Thomas A. D., Huntemann M., Mikhailova N., et al. Uncovering Earth’s virome. Nature. 2016;536(7617):425—30. doi: 10.1038/nature19094
  42. Carroll D., Daszak P., Wolfe N. D., Gao G. F., Morel C. M., Morzaria S., et al. The Global Virome Project. Science. 2018;359(6378):872—4. doi: 10.1126/science.aap7463
  43. Lynch S. V., Pedersen O. The Human Intestinal Microbiome in Health and Disease. Phimister E. G., ed. N. Engl. J. Med. 2016;375(24):2369—79. doi: 10.1056/NEJMra1600266
  44. Dupont H. L., Jiang Z. D., Dupont A. W., Utay N. S. The intestinal microbiome in human health and disease. Trans. Am. Clin. Climatol. Assoc. 2020;131:178—97.
  45. The genital tract and rectal microbiomes: their role in HIV susceptibility and prevention in women. PubMed. Режим доступа: https://pubmed.ncbi.nlm.nih.gov/31144462/ (дата обращения 15.06.2022).
  46. Ippolito M. M., Denny J. E., Langelier C., Sears C. L., Schmidt N. W. Malaria and the Microbiome: A Systematic Review. Clin. Infect. Dis. 2018;67(12):1831—9. doi: 10.1093/cid/ciy374
  47. Comberiati P., Cicco M. D., Paravati F., Sears C. L., Schmidt N. W. The Role of Gut and Lung Microbiota in Susceptibility to Tuberculosis. Int. J. Environ. Res. Public Health. 2021;18(22):12220. doi: 10.3390/ijerph182212220
  48. Waldman A. J., Balskus E. P. The Human Microbiota, Infectious Disease, and Global Health: Challenges and Opportunities. ACS Infect. Dis. 2018;4(1):14—26. doi: 10.1021/acsinfecdis.7b00232
  49. Libertucci J., Young V. B. The role of the microbiota in infectious diseases. Nat. Microbiol. 2019;4(1):35—45. doi: 10.1038/s41564-018-0278-4
  50. Брико Н. И. Парадигма современной эпидемиологии. Эпидемиология и вакцинопрофилактика. 2013;(6(73)):4—10.
  51. Tacconelli E., Carrara E., Savoldi A., Harbarth S., Mendelson M., Monnet D., et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018;18(3):318—27. doi: 10.1016/S1473-3099(17)30753-3
  52. Ma Z., Lee S., Jeong K. C. Mitigating Antibiotic Resistance at the Livestock-Environment Interface: A Review. J. Microbiol. Biotechnol. 2019;29:1683—92. doi.org/10.4014/jmb.1909.09030
  53. Lewnard J. A., Reingold A. L. Emerging Challenges and Opportunities in Infectious Disease Epidemiology. Am. J. Epidemiol. 2019;188(5):873—82. doi: 10.1093/aje/kwy264
  54. Petousis-Harris H., Paynter J., Morgan J., Saxton P., McArdle B., Goodyear-Smith F., et al. Effectiveness of a group B outer membrane vesicle meningococcal vaccine against gonorrhoea in New Zealand: a retrospective case-control study. Lancet (London, England). 2017;390(10102:1603—10. doi: 10.1016/S0140-6736(17)31449-6
  55. Jackson M. L., Chung J. R., Jackson L. A., Phillips C. H., Benoit J., Monto A. S., et al. Influenza Vaccine Effectiveness in the United States during the 2015—2016 Season. N. Engl. J. Med. 2017;377(6):534—43. doi: 10.1056/NEJMoa1700153
  56. Vandenbroucke J. P., Pearce N. Test-Negative Designs: Differences and Commonalities with Other Case–Control Studies with “Other Patient” Controls. Epidemiology. 2019;30(6):838—44. doi: 10.1097/EDE.0000000000001088
  57. Fukushima W., Hirota Y. Basic principles of test-negative design in evaluating influenza vaccine effectiveness. Vaccine. 2017;35(36):4796—800. doi: 10.1016/j.vaccine.2017.07.003
  58. McArthur D. B. Emerging Infectious Diseases. Nurs. Clin. N. Am. 2019;54(2):297. doi: 10.1016/j.cnur.2019.02.006
  59. The Lancet Regional Health-Western Pacific. To end the neglect of neglected tropical diseases. Lancet Reg Health West Pac. 2022;18:100388. doi: 10.1016/j.lanwpc.2022.100388
  60. Neglected tropical diseases. Режим доступа: https://www.who.int/news-room/questions-and-answers/item/neglected-tropical-diseases (дата обращения 18.05.2022).
  61. World Health Organization. Disease burden and mortality estimates. Режим доступа: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates (дата обращения 19.05.2022).
  62. Sixty-sixth World Health Assembly. Режим доступа: https://apps.who.int/gb/ebwha/pdf_files/WHA66-REC1/WHA66_2013_REC1_complete.pdf (дата обращения 19.05.2022).
  63. Bennett J. E., Stevens G. A., Mathers C. D., Bonita R., Rehm J., Kruk M. E., et al. NCD Countdown 2030: worldwide trends in non-communicable disease mortality and progress towards Sustainable Development Goal target 3.4. Lancet. 2018;392(10152):1072—88. doi: 10.1016/S0140-6736(18)31992-5
  64. Global Action Plan for the Prevention and Control of NCDs 2013–2020. Режим доступа: https://www.who.int/publications-detail-redirect/9789241506236 (дата обращения 27.05.2022).
  65. Noncommunicable diseases: Mortality. Режим доступа: https://www.who.int/data/gho/data/themes/topics/sdg-target-3_4-non-communicable-diseases-and-mental-health (дата обращения 27.05.2022).
  66. Goal 3. Department of Economic and Social Affairs. Режим доступа: https://sdgs.un.org/goals/goal3 (дата обращения 27.05.2022).
  67. Об утверждении Стратегии формирования здорового образа жизни населения, профилактики и контроля неинфекционных заболеваний на период до 2025 года от 15 января 2020. Режим доступа: https://docs.cntd.ru/document/564215449 (дата обращения 21.04.2022)
  68. Концевая А. В., Мырзаматова А. О., Муканеева Д. К., Сапунова И. Д., Баланова Ю. А., Худяков М. Б. Экономический ущерб от основных хронических неинфекционных заболеваний в Российской Федерации в 2016 году. Профилактическая медицина. 2019;22(6). doi: 10.17116//profmed20192206118
  69. Камынина Н. Н., Мыльникова Л. А. Факторы риска хронических неинфекционных заболеваний: аналитическое исследование результатов диспансеризации в городе Москве. Проблемы социальной гигиены, здравоохранения и истории медицины. 2020;28(S2):1215—21. doi: 10.32687/0869-866X-2020-28-s2-1215-1221
  70. Баланова Ю. А., Шальнова С. А., Деев А. Д., Имаева А. Э., Концевая А. В., Муромцева Г. А. и др. Ожирение в российской популяции — распространенность и ассоциации с факторами риска хронических неинфекционных заболеваний. Российский кардиологический журнал. 2018;(6):123—30. doi: 10.15829/1560-4071-2018-6-123-130
  71. Жернакова Ю. В., Железнова Е. А., Чазова И. Е., Ощепкова Е. В., Долгушева Ю. А., Яровая Е. Б. Распространенность абдоминального ожирения в субъектах Российской Федерации и его связь с социально-экономическим статусом, результаты эпидемиологического исследования ЭССЕ-РФ. Терапевтический архив. 2018;90(10):14—22. doi: 10.26442/terarkh2018901014-22
  72. Jaacks L. M., Vandevijvere S., Pan A., McGowan C. J., Wallace C., Imamura F., et al. The Obesity Transition: Stages of the global epidemic. Lancet Diabet. Endocrinol. 2019;7(3):231—40. doi: 10.1016/S2213-8587(19)30026-9
  73. Ожирение и избыточный вес. Режим доступа: https://www.who.int/ru/news-room/fact-sheets/detail/obesity-and-overweight (дата обращения 23.03.2022).
  74. Endalifer M. L., Diress G. Epidemiology, Predisposing Factors, Biomarkers, and Prevention Mechanism of Obesity: A Systematic Review. J. Obes. 2020;2020:6134362. doi: 10.1155/2020/6134362
  75. Armenta-Guirado B., Martínez-Contreras T., Candia-Plata M. C., Esparza-Romero J., Martínez-Mir R., Haby M. M., et al. Effectiveness of the Diabetes Prevention Program for Obesity Treatment in Real World Clinical Practice in a Middle-Income Country in Latin America. Nutrients. 2019;11(10):2324. doi: 10.3390/nu11102324
  76. Global Burden of Disease 2019 Cancer Collaboration; Kocarnik J. M., Compton K., Dean F. E., Fu W., Gaw B. L., Harvey J. D., Henrikson H. J., Force L. M, et al. Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life Years for 29 Cancer Groups From 2010 to 2019: A Systematic Analysis for the Global Burden of Disease Study 2019. JAMA Oncol. 2022;8(3):420—44. doi: 10.1001/jamaoncol.2021.6987
  77. Global Cancer Observatory: Cancer Today. Lyon: International Agency for Research on Cancer. Режим доступа: https://gco.iarc.fr/today (дата обращения 27.05.2022).
  78. Montagnana M., Lippi G. Cancer diagnostics: current concepts and future perspectives. Ann. Transl. Med. 2017;5(13):268. doi: 10.21037/atm.2017.06.20
  79. Кобякова О. С., Куликов Е. С., Деев И. А., Альмикеева А. А., Пименов И. Д., Старовойтова Е. А. Распространенность факторов риска хронических неинфекционных заболеваний среди медицинских работников. Кардиоваскулярная терапия и профилактика. 2018;17(3):96—104. doi: 10.15829/1728-8800-2018-3-96-104
  80. Epidemiological Changes under the COVID-19 Pandemic: Burden of Diseases and Health Care Outcomes. Frontiers Research Topic. Режим доступа: https://www.frontiersin.org/research-topics/19606/epidemiological-changes-under-the-covid-19-pandemic-burden-of-diseases-and-health-care-outcomes#overview (дата обращения 17.04.2022).
  81. Teoh S. E., Masuda Y., Tan D. J. H., Liu N., Morrison L. J, Ong M. E. H., et al. Impact of the COVID-19 pandemic on the epidemiology of out-of-hospital cardiac arrest: a systematic review and meta-analysis. Ann. Intensive Care. 2021;11(1):169. doi: 10.1186/s13613-021-00957-8
  82. Aburto J. M., Schöley J., Kashnitsky I., Zhang L., Rahal C., Missov T. I., et al. Quantifying impacts of the COVID-19 pandemic through life-expectancy losses: a population-level study of 29 countries. Int. J. Epidemiol. 2022;51(1):63—74. doi: 10.1093/ije/dyab207
  83. Tanislav C., Kostev K. Investigation of the prevalence of non-COVID-19 infectious diseases during the COVID-19 pandemic. Public Health. 2022;203:53—7. doi: 10.1016/j.puhe.2021.12.003
  84. Chang A. Y., Cullen M. R., Harrington R. A., Barry M. The impact of novel coronavirus COVID‐19 on noncommunicable disease patients and health systems: a review. J. Intern. Med. 2021 Apr;289(4):450—62. Epub 2020 Oct 27. doi: 10.1111/joim.13184
  85. McGurnaghan S. J., Weir A., Bishop J., et al. Risks of and risk factors for COVID-19 disease in people with diabetes: a cohort study of the total population of Scotland. Lancet Diabet. Endocrinol. 2021;9(2):82—93. doi: 10.1016/S2213-8587(20)30405-8
  86. Strambo D., De Marchis G. M., Bonati L. H., Arnold M., et al. Ischemic stroke in COVID-19 patients: Mechanisms, treatment, and outcomes in a consecutive Swiss Stroke Registry analysis. Eur. J. Neurol. 2022;29(3):732—43. doi: 10.1111/ene.15199
  87. Wu Z., McGoogan J. M. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72­314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239—42. doi: 10.1001/jama.2020.2648
  88. Gasmi A., Peana M., Pivina L., et al. Interrelations between COVID-19 and other disorders. Clin. Immunol. 2021;224:108651. doi: 10.1016/j.clim.2020.108651
  89. Pranata R., Henrina J., Raffaello W. M., Lawrensia S., Huang I. Diabetes and COVID-19: The past, the present, and the future. Metabolism. 2021;121:154814. doi: 10.1016/j.metabol.2021.154814
  90. Cariou B., Hadjadj S., Wargny M., Pichelin M., Al-Salameh A., Allix I., et al. Phenotypic characteristics and prognosis of inpatients with COVID-19 and diabetes: the CORONADO study. Diabetologia. 2020;63(8):1500—15. doi: 10.1007/s00125-020-05180-x
  91. World Health Organization — COVID-19 significantly impacts health services for noncommunicable diseases. Режим доступа: https://www.who.int/news/item/01-06-2020-covid-19-significantly-impacts-health-services-for-noncommunicable-diseases (дата обращения 17.04.2022).
  92. COVID-19 Mental Disorders Collaborators. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet. 2021;398(10312):1700—12. doi: 10.1016/S0140-6736(21)02143-7
  93. Dubé J. P., Smith M. M., Sherry S. B., Hewitt P. L., Stewart S. H. Suicide behaviors during the COVID-19 pandemic: A meta-analysis of 54 studies. Psychiatry Res. 2021;301:113998. doi: 10.1016/j.psychres.2021.113998
  94. Soleimanpour S., Yaghoubi A. COVID-19 vaccine: where are we now and where should we go? Expert Rev. Vaccines. 2021;20(1):23—44. doi: 10.1080/14760584.2021.1875824
  95. Pietzner M., Stewart I. D., Raffler J., Khaw K.-T., Michelotti G. A., Kastenmüller G., et al. Plasma metabolites to profile pathways in noncommunicable disease multimorbidity. Nat. Med. 2021;27(3):471—9. doi: 10.1038/s41591-021-01266-0
  96. Young V. B. The role of the microbiome in human health and disease: an introduction for clinicians. BMJ. 2017;356:j831. doi: 10.1136/bmj.j831

Statistics

Views

Abstract - 6

PDF (Russian) - 4

Cited-By


PlumX

Dimensions


Copyright (c) 2023 АО "Шико"

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Mailing Address

Address: 105064, Vorontsovo Pole, 12, Moscow

Email: ttcheglova@gmail.com

Phone: +7 903 671-67-12

Principal Contact

Tatyana Sheglova
Head of the editorial office
FSSBI «N.A. Semashko National Research Institute of Public Health»

105064, Vorontsovo Pole st., 12, Moscow


Phone: +7 903 671-67-12
Email: redactor@journal-nriph.ru

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies