COGNITIVE-MOTOR TRAINING AS A TECHNOLOGY FOR RESTORING AND PRESERVING SOCIAL INDEPENDENCE AND ACTIVITY

  • Authors: Pogonchenkova I.V.1,2, Aksenova E.I.3, Kamynina N.N.3, Kostenko E.V.1,2, Petrova L.V.1,2
  • Affiliations:
    1. S. I. Spasokukotsky Moscow Centre for research and practice in medical rehabilitation, restorative and sports medicine of Moscow Healthcare Department, 105120, Moscow, Russia
    2. Research Institute of Health Care Organization and Medical Management of the Moscow Health Care Department, 115088, Moscow, Russia
  • Issue: Vol 32 (2024): NO ()
  • Pages: 1147-1153
  • Section: Articles
  • URL: https://journal-nriph.ru/journal/article/view/1790
  • DOI: https://doi.org/10.32687/0869-866X-2024-32-s2-1147-1153
  • Cite item

Abstract


The function of the upper limb impaired due to stroke limits daily activity and reduces the quality of life of patients. Cognitive motor therapy using virtual reality and biofeedback (biofeedback) technologies can optimize rehabilitation. The aim of the study was to evaluate the effectiveness of cognitive motor therapy in patients with post-stroke dysfunction of the upper limb.

About the authors

I. V. Pogonchenkova

S. I. Spasokukotsky Moscow Centre for research and practice in medical rehabilitation, restorative and sports medicine of Moscow Healthcare Department, 105120, Moscow, Russia;

E. I. Aksenova

Research Institute of Health Care Organization and Medical Management of the Moscow Health Care Department, 115088, Moscow, Russia

N. N. Kamynina

Research Institute of Health Care Organization and Medical Management of the Moscow Health Care Department, 115088, Moscow, Russia

E. V. Kostenko

S. I. Spasokukotsky Moscow Centre for research and practice in medical rehabilitation, restorative and sports medicine of Moscow Healthcare Department, 105120, Moscow, Russia;

L. V. Petrova

S. I. Spasokukotsky Moscow Centre for research and practice in medical rehabilitation, restorative and sports medicine of Moscow Healthcare Department, 105120, Moscow, Russia;

References

  1. Banduni O., Saini M., Singh N. et al. Post-stroke rehabilitation of distal upper limb with new perspective technologies: virtual reality and repetitive transcranial magnetic stimulation — a mini review // J. Clin. Med. 2023. Vol. 12, N 8. P. 2944. doi: 10.3390/jcm12082944
  2. Levin M. F., Baniña M. C., Frenkel-Toledo S. et al. Personalized upper limb training combined with anodal-tDCS for sensorimotor recovery in spastic hemiparesis: study protocol for a randomized controlled trial // Trials. 2018. Vol. 19, N 1. P. 7. doi: 10.1186/s13063-017-2377-6
  3. Zheng Y., Peng Y., Xu G. et al. Using corticomuscular coherence to reflect function recovery of paretic upper limb after stroke: a case study // Front. Neurol. 2018. Vol. 8. P. 728. doi: 10.3389/fneur.2017.00728
  4. Plummer P., Zukowski L. A., Feld J. A., Najafi B. Cognitive-motor dual-task gait training within 3 years after stroke: a randomized controlled trial // Physiother. Theory Pract. 2022. Vol. 38, N 10. P. 1329—1344. doi: 10.1080/09593985.2021.1872129
  5. Lim S. B., Peters S., Yang C. L. et al. Frontal, sensorimotor, and posterior parietal regions are involved in dual-task walking after stroke // Front. Neurol. 2022. Vol. 13. P. 904145. doi: 10.3389/fneur.2022.904145
  6. Ismail F. Y., Fatemi A., Johnston M. V. Cerebral plasticity: windows of opportunity in the developing brain // Eur. J. Paediatr. Neurol. 2017. Vol. 21, N 1. P. 23—48. doi: 10.1016/j.ejpn.2016.07.007
  7. Sampaio-Baptista C., Sanders Z. B., Johansen-Berg H. Structural plasticity in adulthood with motor learning and stroke rehabilitation // Annu. Rev. Neurosci. 2018. Vol. 41. P. 25—40. doi: 10.1146/annurev-neuro-080317-062015
  8. Merians A. S., Fluet G. G., Qiu Q. et al. Learning in a virtual environment using haptic systems for movement re-education: can this medium be used for remodeling other behaviors and actions? // J. Diabetes Sci. Technol. 2011. Vol. 5, N 2. P. 301—308. doi: 10.1177/193229681100500215
  9. Arcuri F., Porcaro C., Ciancarelli I. et al. Electrophysiological correlates of virtual-reality applications in the rehabilitation setting: new perspectives for stroke patients // Electronics. 2021. Vol. 10. P. 836. doi: 10.3390/electronics10070836
  10. Kim W.-S., Cho S., Ku J. et al. Clinical application of virtual reality for upper limb motor rehabilitation in stroke: review of technologies and clinical evidence // J. Clin. Med. 2020. Vol. 9. P. 3369. doi: 10.3390/jcm9103369
  11. Chen J., Or C. K., Chen T. Effectiveness of using virtual reality-supported exercise therapy for upper extremity motor rehabilitation in patients with stroke: systematic review and meta-analysis // J. Med. Internet Res. 2022. Vol. 24, N 6. P. e24111. doi: 10.2196/24111
  12. Tuena C., Borghesi F., Bruni F. et al. Technology-assisted cognitive motor dual-task rehabilitation in chronic age-related conditions: systematic review // J. Med. Internet Res. 2023. Vol. 25. P. e44484. doi: 10.2196/44484
  13. Qi J., Gao F., Sun G. et al. HaptGlove-untethered pneumatic glove for multimode haptic feedback in reality-virtuality continuum // Adv. Sci. (Weinh). 2023. Vol. 10, N 25. P. e2301044. doi: 10.1002/advs.202301044
  14. Костенко Е. В., Петрова Л. В., Погонченкова И. В. и др. Эрготренинг в виртуальной среде VR KITCHEN. Государственная регистрация программы для ЭВМ. Номер регистрации (свидетельства): 2022685352; 2022.
  15. Костенко Е. В., Петрова Л. В., Погонченкова И. В. Способ реабилитации нарушений предметно-манипулятивной деятельности верхней конечности методом эрготерапии в виртуальной среде у пациентов, перенесших ишемический инсульт. Изобретение RU 2 817 336 C1; 2023.
  16. Le Roy B., Martin-Krumm C., Poupon C. et al. Virtual exercise in medicine: a proof of concept in a healthy population // JMIR Form. Res. 2024. Vol. 8. P. e45637. doi: 10.2196/45637
  17. Safdar A., Smith M. C., Byblow W. D. et al. Applications of repetitive transcranial magnetic stimulation to improve upper limb motor performance after stroke: systematic review // Neurorehabil. Neural Repair. 2023. Vol. 37, N 11-12. P. 837—849. doi: 10.1177/15459683231209722
  18. Nataraj R., Hollinger D., Liu M. et al. Disproportionate positive feedback facilitates sense of agency and performance for a reaching movement task with a virtual hand // PLoS ONE. 2020. Vol. 15. P. e0233175. doi: 10.1371/journal.pone.0233175
  19. Li Z., Wang T., Liu H. et al. Dual-task training on gait, motor symptoms, and balance in patients with Parkinson's disease: a systematic review and meta-analysis // Clin. Rehabil. 2020. Vol. 34, N 11. P. 1355—1367. doi: 10.1177/0269215520941142
  20. Gallou-Guyot M., Mandigout S., Bherer L. et al. Effects of exergames and cognitive-motor dual-task training on cognitive, physical and dual-task functions in cognitively healthy older adults: an overview // Ageing Res. Rev. 2020. Vol. 63. P. 101135. doi: 10.1016/j.arr.2020.101135

Statistics

Views

Abstract - 0

PDF (Russian) - 0

Cited-By


PlumX

Dimensions


Copyright (c) 1970 АО "Шико"

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Mailing Address

Address: 105064, Vorontsovo Pole, 12, Moscow

Email: ttcheglova@gmail.com

Phone: +7 903 671-67-12

Principal Contact

Tatyana Sheglova
Head of the editorial office
FSSBI «N.A. Semashko National Research Institute of Public Health»

105064, Vorontsovo Pole st., 12, Moscow


Phone: +7 903 671-67-12
Email: redactor@journal-nriph.ru

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies