The Development of Algorithm of Intellectual System of Supporting Decision-Making in Mammographic Diagnostics of Breast Cancer Based on Convolutional Neuronic Network
- Authors: Osmanov E.M.1,2, Tuktamysheva L.M.3, Manyakov R.R.2, Pivovarova K.V.3, Garaeva A.S.1, Korkmazova L.H.1, Drepin V.V.4, Zubayraeva Y.S.1
- Affiliations:
- The Federal State Autonomous Educational Institution of Higher Education “The I. M. Sechenov First Moscow State Medical University” of the Minzdrav of Russia (Sechenov University), 119991, Moscow, Russia
- The State Budget Institution “The Tambov Oblast Children Clinical Hospital”, 392000, Tambov, Russia
- The Federal State Budget Educational Institution of Higher Education “The Orenburg State University”, 460000, Orenburg, Russia
- The Federal State Budget Educational Institution of Higher Education “The I. F. Bunin Elets State University”, 399770, Elets, Russia
- Issue: Vol 33, No 5 (2025)
- Pages: 1203-1209
- Section: Articles
- URL: https://journal-nriph.ru/journal/article/view/2379
- DOI: https://doi.org/10.32687/0869-866X-2025-33-5-1203-1209
- Cite item
Abstract
About the authors
E. M. Osmanov
The Federal State Autonomous Educational Institution of Higher Education “The I. M. Sechenov First Moscow State Medical University” of the Minzdrav of Russia (Sechenov University), 119991, Moscow, Russia; The State Budget Institution “The Tambov Oblast Children Clinical Hospital”, 392000, Tambov, Russia
L. M. Tuktamysheva
The Federal State Budget Educational Institution of Higher Education “The Orenburg State University”, 460000, Orenburg, Russia
R. R. Manyakov
The State Budget Institution “The Tambov Oblast Children Clinical Hospital”, 392000, Tambov, Russia
K. V. Pivovarova
The Federal State Budget Educational Institution of Higher Education “The Orenburg State University”, 460000, Orenburg, Russia
A. S. Garaeva
The Federal State Autonomous Educational Institution of Higher Education “The I. M. Sechenov First Moscow State Medical University” of the Minzdrav of Russia (Sechenov University), 119991, Moscow, Russia
L. H. Korkmazova
The Federal State Autonomous Educational Institution of Higher Education “The I. M. Sechenov First Moscow State Medical University” of the Minzdrav of Russia (Sechenov University), 119991, Moscow, Russia
V. V. Drepin
The Federal State Budget Educational Institution of Higher Education “The I. F. Bunin Elets State University”, 399770, Elets, Russia
Ya. S. Zubayraeva
The Federal State Autonomous Educational Institution of Higher Education “The I. M. Sechenov First Moscow State Medical University” of the Minzdrav of Russia (Sechenov University), 119991, Moscow, Russia
References
- Аминодова И. П., Васильев М. Д., Перминова Е. В. Комплексный подход к обследованию пациенток при диагностике доброкачественных заболеваний и рака молочной железы. Проблемы социальной гигиены, здравоохранения и истории медицины. 2020;(6):1349—54. doi: 10.32687/0869-866X-2020-28-6-1349-1354
- Морозов С. П., Ветшева Н. Н., Овсянников А. Г. Московский скрининг: организация маммографического скрининга как способ повысить выявляемость рака молочной железы на ранних стадиях. Проблемы социальной гигиены, здравоохранения и истории медицины. 2019;27:623—9. doi: 10.32687/0869-866X-2019-27-si1-623-629
- Tabar L., Fagerberg G., Chen H. H. Efficacy of breast cancer screening by age: New results from the Swedish Two-County Trial. Cancer. 1995;75(10):2507—17. doi: 10.1002/1097-0142(19950515)75:10<2507::aid-cncr2820751017>3.0.co;2-h
- Siu A. L.; U. S. Preventive Services Task Force. Screening for Breast Cancer: U. S. Preventive Services Task Force Recommendation Statement [published correction appears in Ann Intern Med. 2016 Mar 15;164(6):448]. Ann. Intern. Med. 2016;164(4):279—96. doi: 10.7326/M15-2886
- Coldman A., Phillips N., Wilson C. Pan-Canadian study of mammography screening and mortality from breast cancer [published correction appears in J Natl Cancer Inst. 2015 Jan;107(1):dju404 doi: 10.1093/jnci/dju404]. J. Natl. Cancer Inst. 2014;106(11):dju261. doi: 10.1093/jnci/dju261
- Lehman D., Arao R. F., Sprague B. L. National Performance Benchmarks for Modern Screening Digital Mammography: Update from the Breast Cancer Surveillance Consortium Constance. Radiology. 2017;283(1):49—58. doi: 10.1148/radiol.2016161174
- Silverstein M. J., Lagios M. D., Recht A. Image-detected breast cancer: state of the art diagnosis and treatment. J. Am. Coll. Surg. 2005;201(4):586—97. doi: 10.1016/j.jamcollsurg.2005.05.032
- Wu N., Geras K. J., Shen Y., Su J., Kim S. G., Kim E., Wolfson S., Moy L., Cho K. Breast Density Classification with Deep Convolutional Neural Networks. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE Press; 2018. P. 6682—6. doi: 10.1109/ICASSP.2018.8462671
- Ручай А. Н., Кобер В. И., Дорофеев К. А. Классификация патологий молочной железы с использованием глубокой сверточной нейронной сети и трансферного обучения. Информационные процессы. 2020;(4):357—65.
- Wang X., Liang G., Zhang Y., Blanton H., Bessinger Z., Jacobs N. Inconsistent Performance of Deep Learning Models on Mammogram Classification. J. Am. Coll. Radiol. 2020;17(6):796—803. doi: 10.1016/j.jacr.2020.01.006
- Tsochatzidis L., Costaridou L., Pratikakis I. Deep Learning for Breast Cancer Diagnosis from Mammograms — A Comparative Study. J. Imaging. 2019;5(3):37. doi: 10.3390/jimaging5030037
- Kim J., Sangjun O., Kim Y., Lee M. Convolutional Neural Network with Biologically Inspired Retinal Structure. Procedia Computer Science. 2016;88:145—54. doi: 10.1016/j.procs.2016.07.418
- Matsugu M., Mori K., Mitari Y., Kaneda Y. Subject independent facial expression recognition with robust face detection using a convolutional neural network. Neural Netw. 2003;16(5-6):555—9. doi: 10.1016/S0893-6080(03)00115-1
- Abdelhafiz D., Yang C., Ammar R., Nabavi S. Deep convolutional neural networks for mammography: Advances, challenges and applications. BMC Bioinformatics. 2019;20:281. doi: 10.1186/s12859-019-2823-4
- Heath M., Bowyer K., Kopans D., Moore R., Kegelmeyer P. Jr. The digital database for screening mammography. Режим доступа: http://www.eng.usf.edu/cvprg/Mammography/software/HeathEtAlIWDM_2000.pdf (дата обращения 12.02.2021).
- Heath M., Bowyer K., Kopans D., Moore R., Kegelmeyer P. Jr., Moore R., Chang K., Munishkumaran S. Digital database for screening mammography: 1998. Режим доступа: http://www.eng.usf.edu/cvprg/Mammography/software/HeathEtAlIWDM_1998.pdf (дата обращения 12.02.2021).
- Бермишева М. А., Богданова Н. В., Гилязова И. Р. Этнические особенности формирования генетической предрасположенности к развитию рака молочной железы. Генетика. 2018;(2):233—42 doi: 10.7868/S0016675818020042
- Inuzuka M., Watanabe T., Yotsumoto J. Analysis of clinical characteristics in breast cancer patients with the Japanese founder mutation of BRCA1 L63X. J. Clin. Oncol. 2015;33(28_suppl):22. doi: 10.1200/jco.2015.33.28_suppl.22
- Loizidou M. A., Hadjisavvas A., Pirpa P. BRCA1 and BRCA2 mutation testing in Cyprus; a population based study. Clin. Genet. 2017;91(4):611—5. doi: 10.1111/cge.12886
- Абдураимов А. Б., Михайлова З. Ф., Лесько К. А. Выбор стратегии скрининга рака молочной железы у женщин старших возрастных групп. Клиническая геронтология. 2018;1—2(24):8—15. doi: 10.26347/1607-2499201801-02008-015




