Mathematical Tools for Prioritizing Health Technologies: Focus on Implementing Multicriteria Decision Analysis Models
- Authors: Andreev D.A.1
- Affiliations:
- Research Institute for Healthcare Organization and Medical Management, 115088, Moscow, Russia
- Issue: Vol 33 (2025): NO ()
- Pages: 1005-1010
- Section: Articles
- URL: https://journal-nriph.ru/journal/article/view/2325
- DOI: https://doi.org/10.32687/0869-866X-2025-33-s2-1005-1010
- Cite item
Abstract
MCDA (Multicriteria Decision Analysis methods) allow for a comprehensive assessment of healthcare technologies based on diverse criteria. The study analyzes the main MCDA methods and the specifics of their application for prioritizing medical technologies. The materials are obtained from the PubMed database and the Google system. A generalized MCDA algorithm is presented, and frequently used models are highlighted: the weighted sum method (WSM), the theory of multicriteria utility (MAUT), and the analytical hierarchical process (AHP). The MCDA support software tools are considered. Special attention is paid to promising hybrid methods (AHP-TOPSIS) and models for dealing with uncertainties (fuzzy AHP and TOPSIS). Effective implementation of MCDA requires the development of medical informatics, but the key role belongs to the human factor — experts who determine the analysis strategy, the quality of the source data and the interpretation of the results. Automated systems and artificial intelligence need mandatory monitoring and validation by specialists when used for management decisions in healthcare.
About the authors
D. A. Andreev
Research Institute for Healthcare Organization and Medical Management, 115088, Moscow, Russia
References
- Khanal S., Nghiem S., Miller M. et al. Development of a prioritization framework to aid healthcare funding decision making in health technology assessment in Australia: application of multicriteria decision analysis // Value in Health. 2024. Vol. 27. P. 1585—1593. doi: 10.1016/j.jval.2024.07.003
- Baltussen R., Marsh K., Thokala P. et al. Multicriteria decision analysis to support health technology assessment agencies: benefits, limitations, and the way forward // Value in Health. 2019. Vol. 22. P. 1283—1288. doi: 10.1016/j.jval.2019.06.014
- Baran-Kooiker A., Czech M., Kooiker C. Multi-criteria decision analysis (MCDA) models in health technology assessment of orphan drugs — a systematic literature review. Next steps in methodology development? // Front. Public Health. 2018. Vol. 6. P. 287. doi: 10.3389/fpubh.2018.00287
- Marsh K. D., Sculpher M., Caro J. J., Tervonen T. The use of MCDA in HTA: great potential, but more effort needed // Value in Health. 2018. Vol. 21. P. 394—397. doi: 10.1016/j.jval.2017.10.001
- Niewada M., Zawodnik A. Multiple criteria decision analysis (MCDA) for health care decision making — overview of guidelines // J. Health Policy & Outcomes Res. 2019. Vol. 1. doi: 10.7365/JHPOR.2018.2.4
- Angelis A., Linch M., Montibeller G. et al. Multiple criteria decision analysis for HTA across four EU member states: piloting the advance value framework // Social Science & Medicine. 2020. Vol. 246. P. 112595. doi: 10.1016/j.socscimed.2019.112595
- Campolina A. G., Estevez-Diz M. D.P., Abe J. M., de Soárez P. C. Multiple criteria decision analysis (MCDA) for evaluating cancer treatments in hospital-based health technology assessment: the paraconsistent value framework // PLOS One. 2022. Vol. 17. P. e0268584. doi: 10.1371/journal.pone.0268584
- Roy A., Kar B. A multicriteria decision analysis framework to measure equitable healthcare access during COVID-19 // J. Transport & Health. 2022. Vol. 24. P. 101331. doi: 10.1016/j.jth.2022.101331
- Gongora-Salazar P., Rocks S., Fahr P. et al. The use of multicriteria decision analysis to support decision making in healthcare: an updated systematic literature review // Value in Health. 2023. Vol. 26. P. 780—790. doi: 10.1016/j.jval.2022.11.007
- Takhar P., Geirnaert M., Gavura S. et al. Application of Multi-criteria decision analysis (MCDA) to prioritize real-world evidence studies for health technology management: outcomes and lessons learned by the Canadian Real-World Evidence for Value of Cancer Drugs (CanREValue) collaboration // Curr. Oncol. 2024. Vol. 31. P. 1876—1898. doi: 10.3390/curroncol31040141
- Gauvreau C. L., Schreyer L., Gibson P. J. et al. Development of a value assessment framework for pediatric health technologies using multicriteria decision analysis: expanding the value lens for funding decision making // Value in Health. 2024. Vol. 27. P. 879—888. doi: 10.1016/j.jval.2024.03.012
- Ruggeri M., Cadeddu C., Roazzi P. et al. Multi—criteria—decision—analysis (MCDA) for the horizon scanning of health innovations an application to COVID 19 emergency // Int. J. Environ. Res. Public Health. 2020. Vol. 17. P. 7823. doi: 10.3390/ijerph17217823
- Zelei T., Mendola N. D., Elezbawy B. et al. Criteria and scoring functions used in Multi-criteria decision analysis and value frameworks for the assessment of rare disease therapies: a systematic literature review // PharmacoEconomics — Open. 2021. Vol. 5. P. 605—612. doi: 10.1007/s41669-021-00271-w
- Sun C., Li S., Deng Y. Determining weights in multi-criteria decision making based on negation of probability distribution under uncertain environment // Mathematics. 2020. Vol. 8. P. 191. doi: 10.3390/math8020191
- Hansen P., Devlin N. Multi-criteria decision analysis (MCDA) in healthcare decision-making // Oxford Research Encyclopedia of Economics and Finance. Oxford; 2019. doi: 10.1093/acrefore/9780190625979.013.98
- Belton V., Stewart T. Multiple criteria decision analysis: an integrated approach. Springer Science & Business Media; 2012.
- Saaty T. L. Axiomatic foundation of the analytic hierarchy process // Management Science. 1986. Vol. 32. P. 841—855. doi: 10.1287/mnsc.32.7.841
- Bana E., Costa C. A., Vansnick J.-C. The MACBETH approach: basic ideas, software, and an application // Meskens N., Roubens M. (eds.) Advances in Decision Analysis. Mathematical Modelling: Theory and Applications. Springer, Dordrecht; 1999. Vol. 4. P. 131—157. doi: 10.1007/978-94-017-0647-6_9
- Reed Johnson F., Lancsar E., Marshall D. et al. Constructing experimental designs for discrete-choice experiments: report of the ISPOR conjoint analysis experimental design good research practices task force // Value in Health. 2013. Vol. 16. P. 3—13. doi: 10.1016/j.jval.2012.08.2223
- Bellos I. Multicriteria decision-making methods for optimal treatment selection in network meta-analysis // Medical Decision Making. 2023. Vol. 43. P. 78—90. doi: 10.1177/0272989X221126678
- Thokala P., Duenas A. Multiple criteria decision analysis for health technology assessment // Value in Health. 2012. Vol. 15. P. 1172—1181. doi: 10.1016/j.jval.2012.06.015
- Chaube S., Pant S., Kumar A. et al. An overview of multi-criteria decision analysis and the applications of AHP and TOPSIS methods // Int. J. Math. Eng. Manag. Sci. 2024. Vol. 9. P. 581—615. doi: 10.33889/IJMEMS.2024.9.3.030
- Global Six Sigma USA. Multi-criteria decision analysis (MCDA). All You Need to Know 2024. URL: https://www.6sigma.us/six-sigma-in-focus/multi-criteria-decision-analysis-mcda/ (дата обращения: 28.04.2025).
- Khan I., Pintelon L., Martin H. The application of multicriteria decision analysis methods in health care: a literature review // Medical Decision Making. 2022. Vol. 42. P. 262—274. doi: 10.1177/0272989X211019040
- Beny K., Dubromel A., du Sartz de Vigneulles B. et al. Multiple criteria decision analysis for therapeutic innovations in a hemophilia care center: a pilot study of the organizational impact of innovation in hemophilia care management // PLOS One. 2022. Vol. 17. P. e0273775. doi: 10.1371/journal.pone.0273775
- Schneider P. P., van Hout B., Heisen M. et al. The Online elicitation of personal utility functions (OPUF) tool: a new method for valuing health states // Wellcome Open Research. 2022. Vol. 7. P. 14. doi: 10.12688/wellcomeopenres.17518.1
- Angelis A., Kanavos P. Value-based assessment of new medical technologies: towards a robust methodological framework for the application of multiple criteria decision analysis in the context of health technology assessment // PharmacoEconomics. 2016. Vol. 34. P. 435—446. doi: 10.1007/s40273-015-0370-z
- Yang C., Wang Y., Hu X. et al. Improving hospital based medical procurement decisions with health technology assessment and multi-criteria decision analysis // INQUIRY: The Journal of Health Care Organization, Provision, and Financing. 2021. Vol. 58. doi: 10.1177/00469580211022911
- Hezer S., Gelmez E., Özceylan E. Comparative analysis of TOPSIS, VIKOR and COPRAS methods for the COVID-19 regional safety assessment // J. Infect. Public Health. 2021. Vol. 14. P. 775—786. doi: 10.1016/j.jiph.2021.03.003
- Su P., Zhi K., Xu H. et al. The application of multi-criteria decision analysis in evaluating the value of drug-oriented intervention: a literature review // Front. Pharmacol. 2024. Vol. 15. P. 1245825. doi: 10.3389/fphar.2024.1245825
- Moreno-Calderón A., Tong T. S., Thokala P. Multi-criteria decision analysis software in healthcare priority setting: a systematic review // PharmacoEconomics. 2020. Vol. 38. P. 269—283. doi: 10.1007/s40273-019-00863-9
- Babashahi S. Using multi-criteria decision analysis (MCDA) to support health research funding decision-making. Otago; 2020.
- Hummel J. M., Bridges J. F. P., IJzerman M. J. Group decision making with the analytic hierarchy process in benefit-risk assessment: a tutorial // The Patient-Patient-Centered Outcomes Research. 2014. Vol. 7. P. 129—140. doi: 10.1007/s40271-014-0050-7
- Mobinizadeh M., Raeissi P., Nasiripour A. A. et al. A model for priority setting of health technology assessment: the experience of AHP-TOPSIS combination approach // Daru. 2016. Vol. 24. P. 10. doi: 10.1186/s40199-016-0148-7
- Hongxia W., Juanjuan G., Han W. et al. An integration of hybrid MCDA framework to the statistical analysis of computer-based health monitoring applications // Front. Public Health. 2024. Vol. 11. P. 1341871. doi: 10.3389/fpubh.2023.1341871




