IS POSSIBLE TO DECREASE THE RISK OF DEVELOPMENT OF UNDESIRABLE EFFECTS OF MEDICATIONS APPLYING COMPUTER TECHNOLOGIES? (A REVIEW)

  • Authors: Shimanovskiy N.L.1,2,3,4, Shegai M.M.3,2, Roik R.O.5
  • Affiliations:
    1. The Federal State Budget Educational Institution of Higher Education N. I. Pirogov Russian National Research Medical University of Minzdrav of Russia, 117997, Moscow, Russia
    2. N. A. Semashko National Research Institute of Public Health, 105064, Moscow, Russia
    3. The Federal State Budget Educational Institution of Higher Education “The G. V. Plekhanov Russian Economic University”, 115054, Moscow, Russia
    4. The Federal State Budgetary Institution "The Academician N. N. Burdenko Main Military Clinical Hospital" of Ministry of Defense of Russia, 105094, Moscow, Russia
  • Issue: Vol 31, No 4 (2023)
  • Pages: 605-612
  • Section: Articles
  • URL: https://journal-nriph.ru/journal/article/view/1842
  • DOI: https://doi.org/10.32687/0869-866X-2023-31-4-605-612
  • Cite item

Abstract


The article presents overview of modern concepts about application of artificial intelligence (AI) in pharmacotherapy to decrease risk of developing undesirable side effects of medications. The possibilities of applying AI in selection of optimal medicine or combination of medicines and prediction of treatment results are considered. The choice of the best medicine for patient usually requires integration of data of results of comprehensive examination of patient considering success of genetics and/or proteomics as well as data about chemical descriptors of compounds of medications. The prognosis of medication interactions is often based on indicators of similarity assuming that medications with analogous structures or targets will have comparable behavior or may impede each other. The optimization of scheme of dosage of medicines is implemented applying mathematical models to interpret pharmacokinetic and pharmacodynamic data.

About the authors

N. L. Shimanovskiy

The Federal State Budget Educational Institution of Higher Education N. I. Pirogov Russian National Research Medical University of Minzdrav of Russia, 117997, Moscow, Russia; ;N. A. Semashko National Research Institute of Public Health, 105064, Moscow, Russia; ;The Federal State Budget Educational Institution of Higher Education “The G. V. Plekhanov Russian Economic University”, 115054, Moscow, Russia;

M. M. Shegai

N. A. Semashko National Research Institute of Public Health, 105064, Moscow, Russia;

R. O. Roik

The Federal State Budgetary Institution "The Academician N. N. Burdenko Main Military Clinical Hospital" of Ministry of Defense of Russia, 105094, Moscow, Russia

References

  1. Seeger J. D., Kong S. X., Schumock G. T. Characteristics associated with ability to prevent adverse-drug reactions in hospitalized patients. Pharmacotherapy. 1998 Nov-Dec;18(6):1284—9.
  2. Montastruc J.-L., Lafaurie M., de Canecaude C. Fatal adverse drug reactions: A worldwide perspective in the World Health Organization pharmacovigilance database. Brit. J. Clin. Pharmacol. 2021;87(11):4334—40. doi: 10.1111/bcp.14851
  3. Gautier S., Bachelet H., Bordet R., Caron J. The cost of adverse drug reactions. Exp. Opin. Pharmacother. 2003;4(3):319—26.
  4. Montastruc J.-L., Lafaurie M., de Canecaude C. Fatal adverse drug reactions: A worldwide perspective in the World Health Organization pharmacovigilance database. Brit. J. Clin. Pharmacol. 2021;87(11):4334—40. doi: 10.1111/bcp.14851
  5. Al Hamid A., Ghaleb M., Aljadhey H., Aslanpour Z. A systematic review of hospitalization resulting from medicine-related problems in adult patients. Brit. J. Clin. Pharmacol. 2014;78(2):202—17.
  6. Silva L. T., Modesto A. C. F., Amaral R. G. Hospitalizations and deaths related to adverse drug events worldwide: Systematic review of studies with national coverage. Eur. J. Clin Pharmacol. 2022;78:435—66. doi: 10.1007/s00228-021-03238-2
  7. Carrasco-Garrido P., de Andrés L., Barrera V., de Miguel G., Jiménez-García R. Trends of adverse drug reactions related-hospitalizations in Spain (2001—2006). BMC Health Serv. Res. 2010;10(1):24—30.
  8. Osanlou R., Walker L., Hughes D. A. Adverse drug reactions, multimorbidity and polypharmacy: a prospective analysis of 1 month of medical admissions. BMJ Open. 2022;12:e055551. doi: 10.1136/bmjopen-2021-055551
  9. Gallagher R. M., Kirkham J. J., Mason J. R. Development and interrater reliability of the Liverpool adverse drug reaction causality assessment tool. PLoS One. 2011;6:e28096.
  10. Hakkarainen K. M., Hedna K., Petzold M. Percentage of patients with preventable adverse drug reactions and preventability of adverse drug reactions — a meta-analysis. PLoS One. 2012;7:e33236.
  11. Основы клинической фармакологии и рациональной фармакотерапии: Руководство для практикующих врачей. Под ред. Ю. Б. Белоусова, М. В. Леоновой. М.: Бионика; 2002. 368 с.
  12. Nwadiugwu M. C. Frailty and the risk of polypharmacy in the older person: enabling and preventative approaches. J. Aging Res. 2020;2:1—6.
  13. Brixner D., Biltaji E., Bress A., Unni S., Ye X., Mamiya.T. The effect of pharmacogenetic profiling with a clinical decision support tool on healthcare resource utilization and estimated costs in the elderly exposed to polypharmacy. J. Med. Econ. 2016;19(3):213—28. doi: 10.3111/13696998.2015.1110160
  14. Verdoorn S., Kwint H. F., Hoogland P., Gussekloo J., Bouvy M. L. Drug-related problems identified during medication review before and after the introduction of a clinical decision support system. J. Clin. Pharm. Ther. 2018;43(2):224—31. doi: 10.1111/jcpt.12637
  15. Horn J. R., Hansten P. D., Chan L.-N. Proposal for a new tool to evaluate drug interaction cases. Ann. Pharmacother. 2007;41:674—80.
  16. Yalçın N., Kasıkcı M., Çelik H. T., Allegaert K., Demirkan K., Yigit S., Yurdakök M. Novel Method for Early Prediction of Clinically Significant Drug–Drug Interactions with a Machine Learning Algorithm Based on Risk Matrix Analysis in the NICU. J. Clin. Med. 2022;11:4715. doi: 10.3390/jcm11164715
  17. Katsuno H., Tachi T., Matsuyama T., Sugioka M., Aoyama S., Osawa T., Noguchi Y., Yasuda M., Goto C., Mizui T., Teramachi H. Evaluation of the Direct Costs of Managing Adverse Drug Events in all Ages and of Avoidable Adverse Drug Events in Older Adults in Japan. Front. Pharmacol. 2021 Nov 17;12:761607. doi: 10.3389/fphar.2021.761607
  18. Matsuyama T., Tachi T., Katsuno H., Sugioka M., Aoyama S., Osawa T. Effects of Polypharmacy on the Prevalence of Adverse Drug Events Resulting in Outpatient Visits and Hospitalization. Pharmazie. 2021;76:279—86. doi: 10.1691/ph.2021.1427
  19. Лепахин В. К., Астахова А. В., Овчинникова Е. А., Овчинникова Л. К. Врачебные ошибки как причина осложнений лекарственной терапии. Качественная клиническая практика. 2002;(1):71—7.
  20. Olsen P. M., Lorentzen H., Thomsen K., Fogtmann A. Medication errors in a pediatric department. Ugeskr. Laeger. 1997;159(16):2392—5.
  21. Лозинский Е. Ю., Шмыкова И. И., Лозинский М. Е. Ошибки в лекарственной терапии. Pacific Medical Journal. 2006;(4):41—4.
  22. Изможерова Н. В., Попов А. А., Курындина А. А., Гаврилова Е. И., Шамбатов М. А., Бахтин В. М. Полиморбидность и полипрагмазия у пациентов высокого и очень высокого сердечно-сосудистого риска. Рациональная фармакотерапия в кардиологии. 2022;18(1):20—6. doi: 10.20996/1819-6446-2022-02-09
  23. Cheng F., Zhao Z. Machine learning-based prediction of drug-drug interactions by integrating drug phenotypic, therapeutic, chemical, and genomic properties. J. Am. Med. Inform. Assoc. 2014;21(e2):e278—86.
  24. Sun Y., Xiong Y., Xu Q., Wei D. A hadoop-based method to predict potential effective drug combination. Biomed. Res. Int. 2014;2014:196858. doi: 10.1155/2014/196858
  25. Li X., Xu Y., Cui H., Huang T., Wang D. Prediction of synergistic anti-cancer drug combinations based on drug target network and drug induced gene expression profiles. Artif. Intell. Med. 2017;83:35—43.
  26. Mason D. J., Eastman R. T., Lewis R. P. I., Stott I. P., Guha R., Bender A. Using machine learning to predict synergistic antimalarial compound combinations with novel structures. Front. Pharmacol. 2018;9:20—2.
  27. Xia F., Shukla M., Brettin T., Garcia-Cardona C., Cohn J. Predicting tumor cell line response to drug pairs with deep learning. BMC Bioinform. 2018;19(Suppl. 18):486.
  28. Xu Q., Xiong Y., Dai H., Kumari K. M., Xu Q. PDC-SGB: prediction of effective drug combinations using a stochastic gradient boosting algorithm. J. Theor. Biol. 2017;417:1—7.
  29. Kastrin A., Ferk P., Leskos B. Predicting potential drug-drug interactions on topological and semanticsimilarity features using statistical learning. PLoS One. 2018;13(5):e0196865.

Statistics

Views

Abstract - 0

PDF (Russian) - 2

Cited-By


PlumX

Dimensions


Copyright (c) 2023 АО "Шико"

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Mailing Address

Address: 105064, Vorontsovo Pole, 12, Moscow

Email: ttcheglova@gmail.com

Phone: +7 903 671-67-12

Principal Contact

Tatyana Sheglova
Head of the editorial office
FSSBI «N.A. Semashko National Research Institute of Public Health»

105064, Vorontsovo Pole st., 12, Moscow


Phone: +7 903 671-67-12
Email: redactor@journal-nriph.ru

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies