IS POSSIBLE TO DECREASE THE RISK OF DEVELOPMENT OF UNDESIRABLE EFFECTS OF MEDICATIONS APPLYING COMPUTER TECHNOLOGIES? (A REVIEW)
- Authors: Shimanovskiy N.L.1,2,3,4, Shegai M.M.3,2, Roik R.O.5
- Affiliations:
- The Federal State Budget Educational Institution of Higher Education N. I. Pirogov Russian National Research Medical University of Minzdrav of Russia, 117997, Moscow, Russia
- N. A. Semashko National Research Institute of Public Health, 105064, Moscow, Russia
- The Federal State Budget Educational Institution of Higher Education “The G. V. Plekhanov Russian Economic University”, 115054, Moscow, Russia
- The Federal State Budgetary Institution "The Academician N. N. Burdenko Main Military Clinical Hospital" of Ministry of Defense of Russia, 105094, Moscow, Russia
- Issue: Vol 31, No 4 (2023)
- Pages: 605-612
- Section: Articles
- URL: https://journal-nriph.ru/journal/article/view/1842
- DOI: https://doi.org/10.32687/0869-866X-2023-31-4-605-612
- Cite item
Abstract
About the authors
N. L. Shimanovskiy
The Federal State Budget Educational Institution of Higher Education N. I. Pirogov Russian National Research Medical University of Minzdrav of Russia, 117997, Moscow, Russia; ;N. A. Semashko National Research Institute of Public Health, 105064, Moscow, Russia; ;The Federal State Budget Educational Institution of Higher Education “The G. V. Plekhanov Russian Economic University”, 115054, Moscow, Russia;
M. M. Shegai
N. A. Semashko National Research Institute of Public Health, 105064, Moscow, Russia;
R. O. Roik
The Federal State Budgetary Institution "The Academician N. N. Burdenko Main Military Clinical Hospital" of Ministry of Defense of Russia, 105094, Moscow, Russia
References
- Seeger J. D., Kong S. X., Schumock G. T. Characteristics associated with ability to prevent adverse-drug reactions in hospitalized patients. Pharmacotherapy. 1998 Nov-Dec;18(6):1284—9.
- Montastruc J.-L., Lafaurie M., de Canecaude C. Fatal adverse drug reactions: A worldwide perspective in the World Health Organization pharmacovigilance database. Brit. J. Clin. Pharmacol. 2021;87(11):4334—40. doi: 10.1111/bcp.14851
- Gautier S., Bachelet H., Bordet R., Caron J. The cost of adverse drug reactions. Exp. Opin. Pharmacother. 2003;4(3):319—26.
- Montastruc J.-L., Lafaurie M., de Canecaude C. Fatal adverse drug reactions: A worldwide perspective in the World Health Organization pharmacovigilance database. Brit. J. Clin. Pharmacol. 2021;87(11):4334—40. doi: 10.1111/bcp.14851
- Al Hamid A., Ghaleb M., Aljadhey H., Aslanpour Z. A systematic review of hospitalization resulting from medicine-related problems in adult patients. Brit. J. Clin. Pharmacol. 2014;78(2):202—17.
- Silva L. T., Modesto A. C. F., Amaral R. G. Hospitalizations and deaths related to adverse drug events worldwide: Systematic review of studies with national coverage. Eur. J. Clin Pharmacol. 2022;78:435—66. doi: 10.1007/s00228-021-03238-2
- Carrasco-Garrido P., de Andrés L., Barrera V., de Miguel G., Jiménez-García R. Trends of adverse drug reactions related-hospitalizations in Spain (2001—2006). BMC Health Serv. Res. 2010;10(1):24—30.
- Osanlou R., Walker L., Hughes D. A. Adverse drug reactions, multimorbidity and polypharmacy: a prospective analysis of 1 month of medical admissions. BMJ Open. 2022;12:e055551. doi: 10.1136/bmjopen-2021-055551
- Gallagher R. M., Kirkham J. J., Mason J. R. Development and interrater reliability of the Liverpool adverse drug reaction causality assessment tool. PLoS One. 2011;6:e28096.
- Hakkarainen K. M., Hedna K., Petzold M. Percentage of patients with preventable adverse drug reactions and preventability of adverse drug reactions — a meta-analysis. PLoS One. 2012;7:e33236.
- Основы клинической фармакологии и рациональной фармакотерапии: Руководство для практикующих врачей. Под ред. Ю. Б. Белоусова, М. В. Леоновой. М.: Бионика; 2002. 368 с.
- Nwadiugwu M. C. Frailty and the risk of polypharmacy in the older person: enabling and preventative approaches. J. Aging Res. 2020;2:1—6.
- Brixner D., Biltaji E., Bress A., Unni S., Ye X., Mamiya.T. The effect of pharmacogenetic profiling with a clinical decision support tool on healthcare resource utilization and estimated costs in the elderly exposed to polypharmacy. J. Med. Econ. 2016;19(3):213—28. doi: 10.3111/13696998.2015.1110160
- Verdoorn S., Kwint H. F., Hoogland P., Gussekloo J., Bouvy M. L. Drug-related problems identified during medication review before and after the introduction of a clinical decision support system. J. Clin. Pharm. Ther. 2018;43(2):224—31. doi: 10.1111/jcpt.12637
- Horn J. R., Hansten P. D., Chan L.-N. Proposal for a new tool to evaluate drug interaction cases. Ann. Pharmacother. 2007;41:674—80.
- Yalçın N., Kasıkcı M., Çelik H. T., Allegaert K., Demirkan K., Yigit S., Yurdakök M. Novel Method for Early Prediction of Clinically Significant Drug–Drug Interactions with a Machine Learning Algorithm Based on Risk Matrix Analysis in the NICU. J. Clin. Med. 2022;11:4715. doi: 10.3390/jcm11164715
- Katsuno H., Tachi T., Matsuyama T., Sugioka M., Aoyama S., Osawa T., Noguchi Y., Yasuda M., Goto C., Mizui T., Teramachi H. Evaluation of the Direct Costs of Managing Adverse Drug Events in all Ages and of Avoidable Adverse Drug Events in Older Adults in Japan. Front. Pharmacol. 2021 Nov 17;12:761607. doi: 10.3389/fphar.2021.761607
- Matsuyama T., Tachi T., Katsuno H., Sugioka M., Aoyama S., Osawa T. Effects of Polypharmacy on the Prevalence of Adverse Drug Events Resulting in Outpatient Visits and Hospitalization. Pharmazie. 2021;76:279—86. doi: 10.1691/ph.2021.1427
- Лепахин В. К., Астахова А. В., Овчинникова Е. А., Овчинникова Л. К. Врачебные ошибки как причина осложнений лекарственной терапии. Качественная клиническая практика. 2002;(1):71—7.
- Olsen P. M., Lorentzen H., Thomsen K., Fogtmann A. Medication errors in a pediatric department. Ugeskr. Laeger. 1997;159(16):2392—5.
- Лозинский Е. Ю., Шмыкова И. И., Лозинский М. Е. Ошибки в лекарственной терапии. Pacific Medical Journal. 2006;(4):41—4.
- Изможерова Н. В., Попов А. А., Курындина А. А., Гаврилова Е. И., Шамбатов М. А., Бахтин В. М. Полиморбидность и полипрагмазия у пациентов высокого и очень высокого сердечно-сосудистого риска. Рациональная фармакотерапия в кардиологии. 2022;18(1):20—6. doi: 10.20996/1819-6446-2022-02-09
- Cheng F., Zhao Z. Machine learning-based prediction of drug-drug interactions by integrating drug phenotypic, therapeutic, chemical, and genomic properties. J. Am. Med. Inform. Assoc. 2014;21(e2):e278—86.
- Sun Y., Xiong Y., Xu Q., Wei D. A hadoop-based method to predict potential effective drug combination. Biomed. Res. Int. 2014;2014:196858. doi: 10.1155/2014/196858
- Li X., Xu Y., Cui H., Huang T., Wang D. Prediction of synergistic anti-cancer drug combinations based on drug target network and drug induced gene expression profiles. Artif. Intell. Med. 2017;83:35—43.
- Mason D. J., Eastman R. T., Lewis R. P. I., Stott I. P., Guha R., Bender A. Using machine learning to predict synergistic antimalarial compound combinations with novel structures. Front. Pharmacol. 2018;9:20—2.
- Xia F., Shukla M., Brettin T., Garcia-Cardona C., Cohn J. Predicting tumor cell line response to drug pairs with deep learning. BMC Bioinform. 2018;19(Suppl. 18):486.
- Xu Q., Xiong Y., Dai H., Kumari K. M., Xu Q. PDC-SGB: prediction of effective drug combinations using a stochastic gradient boosting algorithm. J. Theor. Biol. 2017;417:1—7.
- Kastrin A., Ferk P., Leskos B. Predicting potential drug-drug interactions on topological and semanticsimilarity features using statistical learning. PLoS One. 2018;13(5):e0196865.