THE PROBLEM OF FORMATION OF NEW RISKS OF MEDICINAL RESISTANCE OF PATIENTS WITH TUBERCULOSIS IN CONDITION OF ACTIVE USE OF ANTIBIOTICS BY POPULATION UNDER COVID-19

Abstract


In pandemic conditions, situation of active and uncontrolled use by population of antimicrobial preparations treating COVID-19 occurs. So, new risks of development of medication resistance among patients with various infectious diseases, tuberculosis included, appear. The purpose of the study is to characterize prevalence of antimicrobial preparations use by population in relationship with development of medication resistance in patients with tuberculosis during COVID-19 pandemic. Material and methods. The analysis of sales of antimicrobial medicines was implemented on the basis of published official data from the joint-stock company DSM Group presenting monthly audit of the Russian pharmaceutical market. The determination of primary antibiotic resistance was carried out in 2018–2020 on 3312 patients with tuberculosis. The modified method of proportions on liquid nutrient medium in system with automated accounting of microorganisms growth, the method of absolute concentrations and the method of polymerase chain reaction with real-time detection were applied. The results of the study. It was established that the most demanding antimicrobial medications among population were ceftriaxone, azithromycin, levofloxacin, moxifloxacin, azithromycin. At the same time, the maximum increase in sales in 2020 up to 150% as compared with of 2019 was determined in medications derived from quinolone moxifloxacin, levofloxacin, which began to be used in treatment of coronavirus infection. At the same time, these medications are traditionally used in tuberculosis treatment. But in 2020, alarming trend was established that limits treatment of tuberculosis patients. The primary resistance of mycobacteria was also established in newly diagnosed tuberculosis patients, also for the same antimicrobial medications of quinolone derivatives, and increasing in proportion of patients with primary medication resistance to levofloxacin, moxifloxacin in 2020 as compared to 2018 was 189–480%. At the same time, increasing of resistance to other antibiotics made up to 60.8% on average. Conclusion. The study results imply alarming scenario of medication resistance shifts towards very virulent and highly medication‐resistant genotypes. This trend can result in conditions of successful transmission of deadly medication-resistant mutants that can seriously undermine effectiveness of implemented programs of struggle with tuberculosis worldwide.

About the authors

E. V. Bulycheva

The Federal State Budget Educational Institution of Higher Education “The Orenburg State Medical University” of Minzdrav of Russia, 460006, Orenburg, Russia;

V. V. Bulychev

The State Budget Institution of Health Care “The Orenburg Oblast Clinical Anti-tuberculosis Dispensary”, 460041, Orenburg, Russia

N. A. Pashkova

The State Budget Institution of Health Care “The Orenburg Oblast Clinical Anti-tuberculosis Dispensary”, 460041, Orenburg, Russia

References

  1. Дьяченко С. В. Проблема безрецептурного отпуска антибактериальных препаратов, как отражение системы взаимоотношений пациентов, фармацевтов и врачей в условиях регионального фармацевтического рынка. Дальневосточный медицинский журнал. 2009;(1):79—81.
  2. Hoffken G., Niederman M. S. Nosocomial pneumonia: the importance of a deescalating strategy for antibiotic treatment of pneumonia in the ICU. Chest. 2002;122:2183—96.
  3. National Сommittee for Clinical Laboratory Standards. Performance Standards for Antimicrobial Susceptibility Testing; Eleventh Informational Supplement. NSSLS Document M100-S11; 2001. 99 p.
  4. Лесняк Ж. М., Салихова С. Р. Проблема самолечения антибактериальными препаратами и меры по снижению антибиотикорезистентности. Bulletin of Medical Internet Conferences. 2019;(9):382.
  5. Кибрик Б. С., Зенченкова А. В., Терехина Л. М., Соснина О. Ю., Иванова Е. В. Множественная резистентность микобактерий к антибактериальным препаратам у впервые выявленных больных туберкулёзом органов дыхания. Антибиотики и химиотерапия. 2013;(11—12):23—5.
  6. Игнатьева О. А. Лекарственная устойчивость штаммов Mycobacterium tuberculosis и оптимизация диагностических алгоритмов на примере Самарской области. Самара; 2015. 29 с.
  7. Theron G., Peter J., Richardson M., Barnard M., Donegan S., Warren R. The diagnostic accuracy of the GenoType MTBDRsl assay for the detection of resistance to second-line anti-tuberculosis drugs. Cochrane Database Syst. Rev. 2014;10:CD010705.
  8. Фармацевтический рынок России. DSM Group. 2020. 29 с. Режим доступа: https://dsm.ru/upload/iblock/c1d/c1dc1d1c95f3b43953e03d1a821b9c20.pdf (дата обращения 07.08.2021).
  9. Исследование: продажи антибиотиков в России в ноябре выросли более чем в 10 раз. ТАСС. 2020. Режим доступа: https://www.advis.ru/php/print_news.php?id=573DFB3E-50CE-FF41-9657-747720A98A1E (дата обращения 07.08.2021).
  10. Нечаева Ю. Обзор продаж антибактериальных препаратов по итогам 9 месяцев 2020 года. Ремедиум. 2020;(10):18—21.
  11. Devasia R. A., Blackman A., Gebretsadik T. Fluoroquinolone Resistance in Mycobacterium tuberculosis: The Effect of duration and timing of fluoroquinolone exposure. Am. J. Respir. Crit. Care Med. 2009;180:365—70.
  12. Long R., Chong H., Hoeppner V. Empirical treatment of community-acquired pneumonia and the development of fluoroquinolone-resistant tuberculosis. Clin. Infect. Dis. 2009;48:1354—60.
  13. Nguyen Q. H., Contamin L., Nguyen T. V. A., Bañuls A. L. Insights into the processes that drive the evolution of drug resistance in Mycobacterium tuberculosis. Evol. Appl. 2018;11(9):1498—511. Epub 2018 Jun 21. doi: 10.1111/eva.12654
  14. World Health Organization (WHO). Global tuberculosis report 2016. WHO/HTM/TB/2016.13. Geneva, Switzerland: World Health Organization; 2016. Режим доступа: https://apps.who.int/iris/handle/10665/250441 (дата обращения 07.08.2021).
  15. Ford C. B., Lin P. L., Chase M. R., Shah R. R., Iartchouk O., Galagan J., Lipsitch M. Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection. Nat. Genet. 2011;43(5):482. doi: 10.1038/ng.811
  16. Roetzer A., Diel R., Kohl T. A., Ruckert C., Nubel U., Blom J., Niemann S. Whole genome sequencing versus traditional genotyping for investigation of a Mycobacterium tuberculosis outbreak: A longitudinal molecular epidemiological study. PLOS Med. 2013;10(2):e1001387. doi: 10.1371/journal.pmed.1001387
  17. Walker T. M., Ip C. L., Harrell R. H., Evans J. T., Kapatai G., Dedicoat M. J., Peto T. E. Whole‐genome sequencing to delineate Mycobacterium tuberculosis outbreaks: A retrospective observational study. Lancet Infect. Dis. 2013;13(2):137—46. doi: 10.1016/S1473-3099(12)70277-3
  18. Sarathy J. P., Dartois V., Lee E. J. The role of transport mechanisms in Mycobacterium tuberculosis drug resistance and tolerance. Pharmaceuticals (Basel). 2012;5(11):1210—35. doi: 10.3390/ph5111210
  19. Sandgren A., Strong M., Muthukrishnan P., Weiner B. K., Church G. M., Murray M. B. Tuberculosis drug resistance mutation database. PLOS Med. 2009;6(2):e2.
  20. Zhang Y., Yew W. W. Mechanisms of drug resistance in Mycobacterium tuberculosis: Update 2015. Int. J. Tuberculosis Lung Dis. 2015;19(11):1276—89. doi: 10.5588/ijtld.15.0389
  21. McGrath M., Gey van Pittius N. C., van Helden P. D., Warren R. M., Warner D. F. Mutation rate and the emergence of drug resistance in Mycobacterium tuberculosis. J. Antimicrob. Chemother. 2014;69(2):292—302. doi: 10.1093/jac/dkt364
  22. Ford C. B., Shah R. R., Maeda M. K., Gagneux S., Murray M. B., Cohen T., Fortune S. M. Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug‐resistant tuberculosis. Nat. Genet. 2013;45(7):784—90. doi: 10.1038/ng.2656

Statistics

Views

Abstract - 0

PDF (Russian) - 0

Cited-By


PlumX

Dimensions


Copyright (c) 2023 АО "Шико"

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Mailing Address

Address: 105064, Vorontsovo Pole, 12, Moscow

Email: ttcheglova@gmail.com

Phone: +7 903 671-67-12

Principal Contact

Tatyana Sheglova
Head of the editorial office
FSSBI «N.A. Semashko National Research Institute of Public Health»

105064, Vorontsovo Pole st., 12, Moscow


Phone: +7 903 671-67-12
Email: redactor@journal-nriph.ru

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies